• Title/Summary/Keyword: Drifting Angle

Search Result 14, Processing Time 0.024 seconds

Development of Resistance Prediction Method for the Effect of Drifting Angle at the Towing Operation of a Disabled Ship (사고선박 예인시 표류각 영향에 대한 저항 추정법 개발)

  • Kim, Eun-Chan;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.298-303
    • /
    • 2015
  • When a disabled ship is being towed in a seaway, the resistance increase of the towed ship caused by both the external conditions such as wave and wind and the hull conditions such as drifting angle, should be accurately predicted. Most of the disabled ships cannot be towed in the front direction of hull, but they are usually towed in drifted direction with some drifting angle. In this sense, the resistance increase caused by the drifting angle is not an element to be ignored. In this paper, various methods for prediction of the resistance increase caused by the drifting angle are studied. In addition, new prediction methods such as front-lateral projected ratio method and empirical formula method by multiple regression analysis have been derived. The front-lateral projected area ratio method has been applied to a computer program for prediction of the towing condition, and this method has been approved to be a useful method in practical situations.

The Effect of The Drift Velocity on The Ship Motion (표류(漂流)를 고려한 선체운동(船體運動))

  • J.H.,Hwang;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.29-38
    • /
    • 1981
  • In general the drift result in ship heeling, thus it seems to be necessary to analyze the ship motion by considering both the drifting and heeling phenomena. In this paper, a drift velocity and a heeling angle are given as prior conditions, and then within the linear potential theory the hydrodynamic coefficients and wave exciting forces and moments are derived for a ship advancing and drifting with constant speeds. And numerical calculations are preformed for a cylindrical body of shiplike cross section at zerp forward velocity. The 2-D hydrodynamic forces and moments of a heeled cylinder are calculated by using the Frank Close-Fit method. These numerical results for the oscillating cylinder without drift velocity have shown better agreements with experimental data than the numerical results of Kobayashi[2]. The motion responses for a drifting cylinder are calculated ignoring the drift velocity effect in the free surface condition. The accuracy of these calculations can not be verified, because the experimental data are not available. Through these numerical calculations to so concluded that drift velocity effects on the body motion are signiffcant.

  • PDF

Observation and Analysis of Movement Characteristics of Drifting Ships (표류선박 거동특성 관측 및 분석)

  • Lee Moonjin;Kang Chang-gu;Yun Jong-hwui
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • The movement of drifting ships on the sea is closely related to marine environmental forces such as waves, currents, winds, etc. To develop a prediction model for trajectories oi drifting ships, an experiment on the movement of drifting ships was carried out in the Southeastern Sea of Korea. Five types of ships including a lire raft and tour ships with G/T 10tons, G/T 2o tons, G/T 50 tons, and G/T 80 tons, were considered in the experiment. The G/T 50 ton class ship was used as a base ship for obtaining the currents, winds and heading angles of ship following the trajectory. The trajectory of each ship was measured by DGPS(Differential Global Positioning System) and collected using APRS(Automatic Position Reporting System) installed on the base ship. The error range in position fix of DGPS are approximately ±1 m. The drift speed of ship in the experiment was between 3% to 5% of wind speed and drift direction of ship was deflected by ±90° from wind direction. Also, the heading of drifting ship was normal to wind direction.

  • PDF

A Review and Analysis on the Interim Guidelines for Alternative Assessment of the Weather Criterion by Drifting and Motion Test in Waves (표류 및 파랑중 운동 모형시험을 통한 기상기준 평가 대체안 고찰)

  • Yoon, Hyeon-Kyu;Kim, Sun-Young;Kim, Jin-Ha;Kim, Young-Shik;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.529-537
    • /
    • 2006
  • International Maritime Organization (IMO) is planning to include the Alternative Assessment of the Weather Criterion in the new Intact Stability (IS) Code to be revised. In this study, the procedure of the model test in the Interim Guidelines was reviewed by carrying out the model test and analyzing the test results. For this purpose, RO/RO passenger ship whose ratios of breadth to draft and the height of weight to draft were above 3.5 and above 0.6 respectively was selected as a test ship. Drifting test and motion test in regular waves were performed to estimate the hydrodynamic heeling lever and roll-back angle. Motion tests in waves were carried out in the three wave steepness conditions to measure roll-back angle and examine the feasibility of so called, the Three-step method. Using the test data, satisfaction of the Weather Criterion was assessed for the test ship by using the alternative method and compared with the current method.

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

Yaw Angle Command Generation and Adaptive Fuzzy Control for Automatic Route Tracking of Ships (선박자동항로 추적을 위한 회두각 명령의 생성과 적응 퍼지제어)

  • 이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.199-208
    • /
    • 2001
  • In this paper, an automatic route tracking algorithm using the position variables and the yaw angle of a ship is suggested, Since most autopilot systems paly only a role of course-keeping by integrating the gyrocompass output, they cannot cope with position errors between the desired route and real route of the ship resulted from a drifting and disturbances such as wave, wind and currents during navigation. In order for autopilot systems to track the desired route, a method which can reduce such position errors is required and some algorithms have been proposed[1,2]While such were turned out effective methods, they have a shortage that the rudder control actions for reducing the position errors are occurred very frequently. In order to improve this problem it is necessary to convert that error into the corresponding yaw angle and necessary to treat only yaw angle control problem. To do this a command generation algorithm which converts the rudder angle command reducing the current position error into they yaw angle command is suggested. To control the ship under disturbances and nonlinearities of the ship dynamics, the adaptive fuzzy controller is developed. Finally, through computer simulations for two ship models, the effectiveness of the suggested method and the possibility of the automatic route tracking are assured.

  • PDF

Astudy on the classification of Eastern Coastal line of korea from the view point of Prevailing Wave Direction (탁월파랑에 의한 동해안선 분류의 조사연구)

  • 이원환;이정태
    • Water for future
    • /
    • v.11 no.1
    • /
    • pp.39-46
    • /
    • 1978
  • The approaching deep water wave heights and directions affect the wave energy which is carried to the coast. By studing the relations between the longshore wave energy theory and the evolution of coastline, writer can arrive following conclusion. The longshore lottoral drifting affects to a great deal the formation of the coast, and by investigating on the eastern coastal geomophorogy of korea, the theory was proued as a true and made it possible to an approaching to the subdivided classification of eastern coast of lorea. That is to asy that angle taken by the level between the wave crest line of prevailing wave(NE) and the coastline was measured as less than 15#, and in the area neighboring the river which served as source of Sand parrticles, there are grand scale formation of sand beach expectable, in the other hand the formation of sand beach in case of $35^{\circ}{\leq}{\alpha }o{\leq}55^{\circ}$ which represents the vivid phenomena of longshore littoral drifting was proved not influencial but rather transformed into a rocky coast. Depending on the above facts the writer classified general shape of the coast affected by the vivid wave action into the following three, (1) The equilibrium beach. (2) Erosinal beach. (3) Geomophorogical beach, and made the sandy and rocky coast are subdivided as S-A.B.C. and R-DEF.

  • PDF

Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions

  • Zaky, Mochammad;Yasukawa, Hironori
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.53-65
    • /
    • 2018
  • The load condition significantly influences ship maneuverability in calm water. In this research, the effect of the load condition on turning performance of a very large crude oil carrier (VLCC) sailing in adverse weather conditions is investigated by an MMG-based maneuvering simulation method. The relative drift direction of the ship in turning to the wave direction is $20^{\circ}-30^{\circ}$ in ballast load condition (NB) and full load condition (DF) with a rudder angle $35^{\circ}$ and almost constant for any wind (wave) directions. The drifting displacement in turning under NB becomes larger than that under DF at the same environmental condition. Advance $A_d$ and tactical diameter $D_t$ become significantly small with an increasing Beaufort scale in head wind and waves when approaching, although $A_d$ and $D_t$ are almost constant in following wind and waves. In beam wind and waves, the tendency depends on the plus and minus of the rudder angle.

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

A Study on the Improvement of SAR Capabilities in Korea -Analysis of marine casualties and leeway field experiment- (우리나라의 SAR능력 향상에 관한 연구 -해난사고 분석 및 Leeway 현장실험-)

  • 윤종휘;이문진;장하룡;고성정
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • We studied the characteristics of marine casualties within the area under control of Korea National Maritime Police and leeway of drifting vessel. According to 5 years'(1995~1999) data of casualties, it was found that the occurrence of casualties by fishing boats ranked the highest and a considerable numbers of casualties took place more than 20 miles off the shore. From a result of field experiment of G/T 50 tons vessel off Busan harbor on Apr. 26~28, 2000, we computed that the linear equation of leeway speed(cm/s) was 1.01$\times$U(U : wind speed in m/s)+11.36 with correlation coefficient between wind speed and leeway speed being 0.252 and we found leeway angle range from $+87^{\circ}$(right) to $-78^{\circ}$(left ) of the downwind direction.

  • PDF