• Title/Summary/Keyword: Dried-spermatozoa

Search Result 3, Processing Time 0.019 seconds

Revolution of Dead-Cell: Production of New Generation by Intracytoplasmic Dried-Sperm Injection in Mammal

  • Kim, Duk-Im;Kim, Chang Jin;Lee, Kyung-Bon
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.69-76
    • /
    • 2015
  • In a conventional sense, dried-spermatozoa are all dead and motionless due to the lost of their natural ability to penetrate oocytes both in vivo and in vitro. However, their nuclei are completely able to contribute to normal embryonic development even after long-term preservation in a dried state when the dried-spermatozoa are microinjected into the oocytes. In this sense, dried spermatozoa must still be alive. Thus, defining spermatozoa as alive or dead seems rather arbitrary. Several drying method of sperm including freeze-drying, evaporative/convective-drying and heat-drying were represented in this review. Although the drying protocol reported here will need further improvement, the results suggest that it may be possible to store the male genetic resources.

In Vitro Development of Porcine Oocytes Following Intracytoplasmic Injection of Freeze-Dried Spermatozoa with Trehalose (Trehalose에 의하여 동결 건조된 정자의 돼지 난자 내 직접주입 후 체외 배발달)

  • Kang, Hwa-Hyung;Lee, Ji-Woong;Kang, Man-Jong;Kim, Kwang-Hyun;Moon, Seung-Ju
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The objectives of this study were to investigate the effects of trehalose as a cryoprotectant for porcine freeze-dried spermatozoa, to find the optimal freeze-drying time and storage periods of freeze-dried spermatozoa, and to find out pronuclear formation rates, cleaved rates, and embryo development through intracytoplasmic injection of freeze-dried spermatozoa on porcine oocytes. The survival rates of spermatozoa after freeze-drying with trehalose treatment were significantly higher than those of them without trehalose treatment (p<0.05). The highest survival rates were found at 75 mM trehalose treatment. The longer storage periods after freeze-drying seemed to have a lower survival rates. Development in culture of pig by ICSI with trehalose treatment were significantly higher than those of them without trehalose treatment (p<0.05). Shorter freeze-drying time of spermatozoa was resulted in the highest cleaved rates and embryo development.

Detailed morphological analysis of axolotl sperm

  • Keskin, Ilknur;Gurgen, Duygu Gursoy;Avinca, Didem;Ozdemir, Ekrem Musa;Keskin, Suat Utku;Karabulut, Seda
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.3
    • /
    • pp.25.1-25.7
    • /
    • 2021
  • The axolotl has extraordinary regeneration capacity compared to other vertebrates. This remarkable potential has been attributed to its life-long neoteny, characterized by the exhibition of embryonic characteristics at the adult stage. A recent study provided a detailed morphological analysis of the sperm morphology of the Ambystoma mexicanum using routine and detailed histological techniques. The primary purpose of the present study is to describe a simple and inexpensive method for evaluating the morphology of axolotl sperm. In this study, spermatophore structures were collected and spread on slides and air-dried. The slides were stained with periodic acid Schiff, toluidine blue, Masson's trichrome, Giemsa, Spermac, and Diff-Quik dye for a morphological examination. The slides were coated with gold/palladium for a scanning electron microscopy examination. The sperm of the axolotl consisted of an elongated head, a neck, and a flagellum covered with an undulating membrane. The lengths of the midpiece, tail, and head were 8.575 ㎛, 356.544 ㎛, and 103.661 ㎛, respectively. In the flagellum part, the wavy membrane structure, whose function has not been explained, surrounds the tail. The data obtained from this study will constitute an important step in designing future research on the reproductive and regeneration capacity of the axolotl.