• Title/Summary/Keyword: Dried agricultural products

Search Result 120, Processing Time 0.024 seconds

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

Use of alternative curing salts for processing salamis

  • Yim, Dong-Gyun;Chung, Ku-Young;Jo, Cheorun;Nam, Ki-Chang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Objective: This study was performed to determine effects of different curing salts on the quality of salamis and to assess feasibility of using NaCl-alternative salts. Methods: Various types of curing salts (KCl or $MgCl_2$) as well as NaCl (sun-dried or refined) were incorporated for processing of salamis. The proximate composition, fatty acids, nucleotide-related compounds, and free amino acids of the salamis were analyzed during 40 days of ripening. Results: The substitution of NaCl by KCl caused higher fat and ash content, but lower moisture content of the salami after 20 days of ripening (p<0.05). Compared with the sun-dried NaCl, use of KCl in salami also led to greater inosine 5'-monophosphate whereas refined NaCl had more inosine (p<0.05). KCl-added salami also had a higher C12:0, C17:1, and C20:0 than other types of salami (p<0.05). $MgCl_2-added$ salami had higher content of free amino acids compared to the other salamis (p<0.05). Conclusion: Alternative curing salts such as KCl and $MgCl_2$ could substitute NaCl in consideration of quality factor of a fermented meat product. Especially replacement of NaCl with KCl will be a suitable strategy for developing relatively low sodium salami products without compromising product quality.

Storage stability of dry-aged beef: the effects of the packaging method and storage temperature

  • Choe, Juhui;Kim, Kwan Tae;Lee, Hyun Jung;Oh, Jungmin;Kim, Hyun Cheol;Park, Bumjin;Choi, Yang Il;Jo, Cheorun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2018
  • Different packaging methods and storage temperatures were tested to determine the storage stability of beef dry-aged for 21 days based on microbial, physicochemical, and sensory qualities. After completion of the dry aging, the dried surface of beef sirloin was trimmed off, and the beef was packaged using two different methods (oxygen-permeable wrap or vacuum packaging) and stored at different temperatures ($3{\pm}2^{\circ}C$ or $-23{\pm}2^{\circ}C$) for 0, 7, 14, or 21 days. Lipid oxidation and the sensory quality of the dry-aged beef were not affected by the packaging method and storage temperature during storage. No microbial growth was observed over the storage period in the vacuum-packaged dry-aged beef, regardless of the storage temperature. However, dry-aged beef in the oxygen-permeable wrap packaging showed microbial spoilage with 8.82 log CFU / g at day 7 of the refrigerated storage. The vacuum-packaged dry-aged beef showed the lowest values (p < 0.05) in $a^*$ and chroma at days 14 and 21 at $3^{\circ}C$, and days 7 and 14 at $-23^{\circ}C$, respectively. Therefore, it is recommended that dry-aged beef with wrap packaging stored in refrigerated conditions should be consumed as quickly as possible due to microbial growth. For long-term storage, dry-aged beef should be frozen because freezing can extend the color stability up to day 21 of storage without adverse effects on the hygienic or meat quality aspects of dry-aged beef.

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1603-1611
    • /
    • 2009
  • High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.29-34
    • /
    • 2012
  • For the purpose of developing liner board for water-resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the paperboard mill by applying the chemicals on the base paper. Then, water-moisture resistant performance and physical properties of the boards were compared each other. The liner board which is dried at high temperature with pressure by Condebelt papermaking system(CK paper) showed a superior performance in strength over common liner boards. Strength of the board increased by surface chemical treatment up to 60% of compressive strength and 30% of bursting strength. Starch insolubilization with Ammonium-Zirconium Carbonate(AZC) and surface coating with a surface size and a moisture resistant chemical on CK paper showed the best result. Therefore, this method was recommended to produce the outer liner board for water -resistant corrugated board.

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(III) - Effects of types of base paper and surface treatments on physical properties of the base paper for water resistant corrugated board - (농산물 저온유통용 내수 골판지 상자의 제조(제3보) -원지의 종류와 표면처리 방법에 따른 내수 골판지 원지의 물성-)

  • Jo Jung-Yeon;Min Choon-Ki;Shin Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.70-77
    • /
    • 2005
  • For the purpose of developing liner board for water resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the mill by applying the chemicals, chosen in the previous studies, on the base paper. Then water-moisture resistance and physical properties of the boards were compared each other. The liner board which is dried at high temperature with pressure by Condebelt (CK paper) showed a superior performance in strength over common liner boards. Strength of the board increased by surface chemical treatment up to $60\%$ of compressive strength and $30\%$ of burst strength. Starch insolubilization with Ammonium Zirconium Carbonate and surface coating with a surface sizing agent and a moisture resistant chemical on CK paper showed the best result. Therefore this method was recommended to produce the outer liner board for water resistant corrugated board.

The Packaging and Irradiation Effects on Volatile Compounds of Red Pepper Powder

  • Lee, Jeung-Hee;Kim, Mee-Ree
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.139.2-139
    • /
    • 2003
  • The packaging and irradiation effects on the volatile compounds of red pepper powder were investigated. The red pepper powder (Capsicum annuum) was prepackaged in vacuum (PE/Nylon film bag), and irradiated with the dose of 0, 3, 5 or 7 kGy at 0$^{\circ}C$. The odor of irradiated red pepper powder was classified into 4 groups (0, 3, 5, and 7 kGy) by electronic nose using metal oxide sensors, and the volatile compounds developed by irradiation were analyzed by GC-MS along with solid phase microextraction. Hexanoic acid and tetramethyl pyrazine, which were found in red pepper powder of 0 kGy, disappeared in irradiated red pepper powder. Further, 1,3-bis(1,1-dimethylethyl)-benzene was detected by GC-MS as a new developed volatile compound in irradiated red pepper, and this compound was identified to be originated from packaging material not from red pepper powder. This study showed that off-odor from packaging materials was responsible for the volatiles produced from dried food treated with irradiation.

  • PDF

Effect of Sample Preparation on Prediction of Fermentation Quality of Maize Silages by Near Infrared Reflectance Spectroscopy

  • Park, H.S.;Lee, J.K.;Fike, J.H.;Kim, D.A.;Ko, M.S.;Ha, Jong Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.643-648
    • /
    • 2005
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and $R^2_{v}$ (variance accounted for in validation set), was slightly better with the LN treatment ($R^2$ 0.75-0.90) than for OD ($R^2$ 0.43-0.81) or IF ($R^2$ 0.62-0.79) treatments. Fermentation characteristics could be successfully predicted by NIRS analysis either with dry or fresh silage. Although statistical results for the OD and IF treatments were the lower than those of LN treatment, intact fresh (IF) treatment may be acceptable when processing is costly or when possible component alterations are expected.

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

On the composition of free sugars, fatty acids, free amino acids and minerals in Lycium fructus (구기자의 당, 아미노산, 지방산, 무기물 조성)

  • Sung, Chang;Oh, Man Jin;Kim, Chan Jo
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 1994
  • Gugija, Lycium fructus, grown widely in Korea has long been used as a chinese herbal medicine. For utilization as a new resource in food industry, and as a fundamental study for processing various gugija products, the chemical compositions of Lycium fructus were studied. Three different kinds of free sugar were analyzed by HPLC, and the composions were glucose, 5.6% : fructose, 5.81% : sucrose, 4.39%, respectively. Free amino acids isolated as a major components in dried Lycium fructus were aspartic acid/asparagine, and glutamic acid/glutamine. The major fatty acids were linoleic, oleic, and palmitic acids, and these composed about 82.98~89.64% of total fatty acids. There are not much differences in contents of the major fatty acids among varieties in the fruits, Lycium fructus. The $Ca^{{+}{+}}$, $Fe^{{+}{+}}$ contents of chinese variety were higher than those of other fruit varities studied.

  • PDF