• Title/Summary/Keyword: Dredging

Search Result 430, Processing Time 0.028 seconds

Evaluation and management of work process in dredger using ECDIS (ECDIS에 의한 준설선의 작업공정 관리 및 평가)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.3
    • /
    • pp.212-221
    • /
    • 2007
  • This paper describes on the evaluation and management of work process in suction hopper dredger and grab bucket dredger as an application of a PC-based ECDIS system. The dynamic tracking of dredging bucket and the data logging of grab dredging information were performed by using the grab dredging vessel "Kunwoong G-18". The position and route tracking of the dredger moving toward the ocean dumping site of dredged material was performed by using the hopper dredging vessel "Samyang-7". The evaluation of wok process in the dredging field, for grab dredger, was continuously carried out on January to May, 2006, in Incheon Hang and for hopper dredger, on July to December, 2003, in Busan Hang, Korea. The dredging information, such as dredger's position, heading, dredging depth and route track which was individually time stamped during the dredging operation, was automatically processed in real-time on the ECDIS and displayed simultaneously on the S-57 ENC chart. From these results, we conclude that the ECDIS system can be applied as a tool in order to manage the work process during the dredging operation, and also in order to generate the factual record of the dredging activities that is sufficient for dredging inspector to accurately evaluate the contract performance even in the absence of a full-time onboard inspector.

Development of Dredging Index for the Rational Remediation of Polluted Coastal Sediments (연안해역 오염퇴적물개선을 위한 준설판단지수(Dredging Index, DI) 개발)

  • Lee Chan-Won;Kwon Young-Tack;Yun Ji-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.70-74
    • /
    • 2004
  • There is a need to have a dredging index for decision of contaminated sediments dredging. Some differences from nation to nation were found in sediment quality guideline being applied by several nations because of economic level, environmental nature, and multiple uses. Therefore, it is not reasonable to adapt one guideline to be applied to sediments dredging. In this study, we developed dredging index by combining four numerical sets of sediment quality judgement into a quadrodiagram for prudential decisions. This newly developed dredging index was applied to the data obtained from Masan Bay before and after the dredging process. The quadrodiagrams of DI give us a nice graphical comparison and numerical values to explain the relative dredging effect under the circumstances of continuous input loadings. When the guideline value of DI is determined for the judgement of dredging considering social and economic impacts on local community, the DI value will be a scientific and reasonable tool in deciding dredging area and dredging depth.

  • PDF

A Study on the Control of Ship Maneuvering by the Simulation of Anchor Dredging (닻 운용 시뮬레이션에 의한 선체운동 제어에 관한 연구)

  • 윤순동
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2002
  • Ship operators use anchor dredging for the collision avoidance or safety of ship handling in a harbour or narrow channel. This paper clarifies the technique of the anchor dredging known as a common sense for. the seafarers A mathematical model at low speed range is established for the estimation of ship motion under the assumed environment, simulate the advance speed , and turning ability under the anchor dredging or not. The results shows good agreement with the conventional seamanship and their experiences as follows. Ahead speed used the anchor dredging is slower(speed reduction ratio:40%) than the normal ahead speed and the stopping distance is shorter (distance reduction ratio:40%)than the normal ahead distance without the anchor dredging.. Turning speed used anchor dredging is slower(speed reduction ratio:72%)than the normal ahead speed and the tactical diameter is shorter(distance reduction ratio:24%)than the diameter by the normal turning without the anchor dredging.

  • PDF

Real-time monitoring of grab dredging operation using ECDIS (ECDIS에 의한 grab 준설작업의 실시간 모니터링에 관한 연구)

  • Jung, Ki-Won;Lee, Dae-Jae;Jeong, Bong-Kyu;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • This paper describes on the real-time monitoring of dredging information for grab bucket dredger equipped with winch control sensors and differential global positioning system(DGPS) using electronic chart display and information system(ECDIS). The experiment was carried out at Gwangyang Hang and Gangwon-do Oho-ri on board M/V Kunwoong G-16. ECDIS system monitors consecutively the dredging's position, heading and shooting point of grab bucket in real-time through 3 DGPS attached to the top bridge of the dredger and crane frame. Dredging depth was measured by 2 up/down counter fitted with crane winch of the dredger. The depth and area of dredging in each shooting point of grab bucket are displayed in color band. The efficiency of its operation can be ensured by adjusting the tidal data in real-time and displaying the depth of dredging on the ECDIS monitor. The reliance for verification of dredging operation as well as supervision of dredging process was greatly enhanced by providing three-dimensional map with variation of dredging depth in real time. The results will contribute to establishing the system which can monitor and record the whole dredging operations in real-time as well as verify the result of dredging quantitatively.

Environmental Windows Setting Method for Environmental-Friendly River Dredging in Nakdong River Basin (낙동강 유역의 친환경 하천 준설을 위한 환경창 수립 방안)

  • Jeong, Anchul;Kim, Seongwon;Kim, Minseok;Jung, Kwansue
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.45-61
    • /
    • 2015
  • The river environment in Korea has changed significantly after the completion of the Four Major Rivers Project due to the outdated river management methods and thus, it is necessary to modify the current river management process. A typical example of this management is dredging but it is a method that usually results in socio-environmental side effects. Therefore, in order to minimize the socio-environmental impacts of dredging, Korea is currently applying the Environmental Windows, a management practice currently being used in the United States that eliminates the risk of potentially harmful impacts of dredging. The use of statistical methods was suggested to address the issue of data insufficiency and this methodology was applied in the downstream part of the Gangjeong-Goryeong weir located within the Nakdong river basin. The results show that when performing a month of dredging, the optimal period is March whereas the optimal month to start dredging is August in case of an eight-month dredging project. If Korea's flood season is also considered for an eight-month dredging process, then October is the optimal month to start dredging. Non-structural methods such as the Environmental Windows reduce maintenance costs and also bring only short-term side effects to the environment, as opposed to structural methods such as the development of environmentally-friendly dredging machine. Given that few studies have explored this topic in Korea, the findings and suggestions could serve as basic data in studying river dredging in the future.

  • PDF

Development of Hydrographic Dredging Surveying and Construction Management System Based on Grab Dredger (그래브 준설선에 의한 해상준설측량 및 시공관리시스템의 개발)

  • Lee, Jin Duk;Lee, Jae Bin;Kim, Hyun Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.3-12
    • /
    • 2013
  • In order to evaluate dredging results scientifically the system which can manage and estimate working process by monitoring dredging process in real-time needs to be constructed. We constructed real-time dredging management system for guidance of a dredging vessel and for survey of dredging construction. This system was designed to have functions of dredger location by GPS, ship direction measurement by GPS/Gyroscope combination, Grab position measurement, dredging depth measurement and correction. In addition, we developed the programs for controlling and operating the constructed system. The system could induce the vessel to accurate position and conduct dredging according to plan and the effectiveness of the system was evaluated through the results of application to actual dredging construction site.

Evaluation of Dredging Capability of Pump Dredger based on Soil Conditions (토질변화에 따른 Pump 준설능력 산정)

  • Park, Hong-Shin;You, Young-In;Kim, Ha-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.316-321
    • /
    • 2006
  • The Prouductivity of pump dredger varies very much depend on soil conditions is one of the main factors affecting construction period. Therefore the acculate evaluation of dredging capability of pump dredger considering soil conditions is a main task in dredging projects. After assesing the results of pump dredging on several Gwangyang port projects, some data of Japan standard for pump dredger are similar to those of actual results and a pump dredging capability table is prepared for future evaluation purposes.

  • PDF

A Study on the Control of Ship Motion using the Anchor Dredging (닻을 운용한 선체운동 제어)

  • 윤순동
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2002.10a
    • /
    • pp.127-134
    • /
    • 2002
  • Ship operators are used to dredge anchor for the collision avoidance or safety of ship handling in a harbour or narrow channel. This paper clarifies the technique using tile anchor dredging known as a common sense for the seafarers. A mathematical model at low speed range has been established for the estimation of ship motion under the assumed environment , simulate the advance speed , and turning ability under the anchor dredging or not. The results shows good agreement with the conventional seamanship and their experiences as follows. Ahead speed used the anchor dredging is slower(speed reduction ratio:40%) than the normal ahead speed and the stopping distance is shorter (distance reduction ratio:40%)than the normal ahead distance without the anchor dredging. Turning speed used anchor dredging is slower(speed reduction ratio:72%)than the normal ahead speed and the tactical diameter is shorter(distance reduction ratio:24%)than the diameter by the normal turning without the anchor dredging.

  • PDF

Analysis of Dredging Efficiency for Operation of Dredging Cutter Head (준설용 커터헤드 운영방식에 따른 준설효율 향상특성 분석)

  • Chae, Dongseok;Park, Jae-Hyeon;Kim, Young Do;Kim, Myunghak;Lee, Mansoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.5-9
    • /
    • 2009
  • In this experiment, the cutter head was designed as the down-scaled shape from the cutter head of the Asan-3 of Hyundai Construction Company. The dredging simulation instrument was installed in the experiment water tank which has the dimension of $4.2m(L){\times}2.2m(W){\times}1.5m(H)$. The speed of all components were controlled manually through the hydraulic tool and motors to find the effective desilting condition. As the results, the experiment was conducted to find the optimate dredging cutter head operation rate. To compare the factors which effect on the dredging effectiveness, the dimensionless dredging volume ratio was introduced and it can be found the best effectiveness at 2.0 m/s suction speed, 8 cm dredging depth and 4~4.5 dimensionless dredging volume ratio. Therefore, in order to take the best effectiveness these 3 components factors should be adequately considered.

  • PDF

An Experimental Study on Dredging Efficiency for Cutter Head Type (커터헤드 형태에 따른 준설효율에 관한 실험적 연구)

  • Park, Jae Hyeon;Kim, Young Do;Lee, Man Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • In this study, the hydraulic experiments were conducted for the dredging efficiency of the cutter head type, which includes the open type and the close type cutter head. The dredging experimental instrument was installed in the large water tank which has the dimension of $4.9m(L){\times}2.2m(W){\times}1.5m(H)$. The dredging experiments were performed for the various conditions of dredging depth, rotating speed, and suction speed of the cutter head. As the results, the dredging efficiency of the close-type cutter head is much higher than that of the open-type cutter head. The dredging efficiency of the same cutter head type was mainly influenced by the rotating speed of cutter head. Also the adequate suction speed of the cutter head is needed for more effective dredging.