• 제목/요약/키워드: Drawing Speed

검색결과 187건 처리시간 0.024초

초고속 신선을 통한 고탄소강(0.75wt%C) 선재의 생산성 향상에 관한 연구 (Improvement of Productivity for the high carbon steel wire(0.75wt%C) through the Superhigh Speed Drawing)

  • 이상곤;김병민;이상진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1632-1636
    • /
    • 2007
  • Generally, fine high carbon steel wire is produced using a multi-pass drawing process with speeds over 1000 m/min. The productivity of the wire drawing mainly depends on achieving the highest drawing speed without breaking the wire. In the multi-pass drawing, as the final drawing speed increases, the temperature rises several hundred Celsius. High temperature of wire increases the brittleness and leads to breaks. The objective of this study is to design pass schedule and wire drawing machine for superhigh speed. In the drawing experiment, it was possible to increase the productivity through the increase in final speed from 1100 m/min to 2000 m/min.

  • PDF

극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향 (Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal)

  • 이준형;정완진;김종호
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

Steel Cord 생산을 위한 초고속 습식 신선 패스 설계 (Pass Design of wet-Drawing with Ultra High Speed for Steel Cord)

  • 황원호;이상곤;김병민;고우식
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.785-790
    • /
    • 2005
  • High-speed multi-pass wet wire drawing has become very common for production of high-carbon steel cord because of the increase in customer demand and production rates in real industrial fields. Although, the wet wire drawing process is performed at a high speed usually above 1000m/min, greater speed is required to improve productivity. However, in the high-carbon steel wire drawing process, the wire temperature rises greatly as the drawing speed increase. The excessive temperature rise makes the wire more brittle and finally leads to wire breakage. In this study, the variations in wire temperature during the multi-pass wet wire drawing process were investigated. A multi-pass wet wire drawing process with 21 passes, which is used to produce steel cord, was redesigned by considering the increase in temperature. Through a wet wire drawing experiment, it was possible to increase the maximum final drawing speed to 2000m/min.

Steel Cord 생산을 위한 초고속 습식 신선 패스 설계 (Pass Design of Wet-Drawing with Ultra High Speed for Steel Cord)

  • 황원호;이상곤;고우식;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 2005
  • Improving the productivity of steel cord is required due to the increase in demand for it, even though steel cord being used as a reinforcement of a tire has been produced at multi-pass wet wire drawing process over 1000m/min. To improve the productivity, if just increase drawing speed, it causes temperature rise, fracture arisen by embrittlement during drawing process. To increase drawing speed affecting productivity, the variation of wire temperature during multi-pass wet wire drawing process is investigated in this study. In result, the multi-pass wet wire drawing process is redesigned. The redesigned wet drawing process with 27 passes efficiently controls wire temperature during drawing process. It, therefore, enables drawing process to be possible at ultra high speed with 2000m/min. It becomes possible to improve the productivity of steel cord in this paper because the increase in drawing speed could be achieved.

  • PDF

마그네슘 판재 온간 딮드로잉성에서의 속도의존성 (Dependency on the Forming speed at the warm forming of magnesium sheet)

  • 박현양;이항수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2007
  • This study is concerned with deep drawability of magnesium sheets(AZ31B) at the warm conditions. Especially the dependency on forming speed has been investigated at the temperature of $200^{\circ}C$ and $300^{\circ}C$. Deep drawing test has been carried out at the temperature of $200^{\circ}C$ and $300^{\circ}C$. The die and blank holder are kept at test temperature by local heating and the punch is kept at room temperature by cooling technique. The magnesium sheets called AZ31B with the thickness of 0.5mm have been applied to deep drawing of circular cup. The drawability has been estimated at the conditions of forming speed (0.1, 1, 10 mm/sec). The results of deep drawing experiments show that the drawability is better at $300^{\circ}C$. Also the deep drawability is improved at the low speed(1mm/sec).

  • PDF

생산성 향상을 위한 세선 인발공정설계에 관한 연구 (A Study on the Fine Wire Drawing Process Design to Improve the Productivity)

  • 이상곤;김병민
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.257-262
    • /
    • 2008
  • The control of wire temperature is very important in the fine wire drawing process. The wire speed should be increased, and the wire temperature should be dropped as much as possible. Up to now, the process design of wire drawing process depends on the experiences of experts. In this study, a wire drawing process design method was proposed to increase the productivity. The proposed method of this study includes the pass schedule and the design of a multi pass wire drawing machine. A pass schedule was performed based on the calculation of the wire temperature. Also, a new multi pass wire drawing machine was manufactured to apply the designed pass schedule. Through the wire drawing experiment, the effectiveness of the proposed process design method was evaluated. The final drawing speed was increased from 1,100m/min to 2,000m/min without deterioration of final drawn wire.

신선 속도 향상을 위한 건식 신선 공정의 패스스케줄 설계 (Pass Schedule Design for Improvement of Drawing Speed in the Dry Wire Drawing Process)

  • 김영식;김동환;김병민;김민안;박용민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.600-603
    • /
    • 2000
  • In the high carbon steel wire drawing process, the wire temperature increases as the drawing speed is faster in order to increase the production rate in the shop floor. The rapid temperature rise causes the wire fracture in the dry wire drawing process. So, in this paper, the isothermal pass schedule program, which includes the calculation method of wire temperature at each pass, is proposed to prevent the wire fracture due to the temperature rise. Using the isothermal pass schedule program, it is newly proposed the pass schedule design system that prevents the cup-cone defects, improves the elongation of the final products and assures further deformation. As a result, the temperature rise of the wire was decreased and the production rate of the final product is remarkably grown up according to the increase of the final drawing speed than that of the conventional process. Also, the proposed pass schedule design system could give a useful information to the process designer who would design the high carbon steel wire drawing process.

  • PDF

AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구 (A Study of Forming limits of Transformation mode of AZ31 Alloy sheet)

  • 정진호;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.378-382
    • /
    • 2008
  • Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed and R-value is very important factor for formability and forming limits and deep drawing. It is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and R-value of Mg alloy sheet in round cup deep drawing. Therefore, the investigation for process variables is necessary to improve formability and forming limits and deep drawing. Also, the effects of strain rate and drawbility were studied by the experiment. The temperature, forming speed, and strain rates and R-value are investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate and R-value the formed parts were good without defects for forming limits and deep drawing.

  • PDF

인발가공에 있어서 마찰수식모델에 관한 연구 (A Study on the Numerical Friction Model in the Drawing)

  • 오박균
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.260-265
    • /
    • 2004
  • In order to analyze the shaped drawing process, it is necessary that the friction boundary condition between dies and blanks should be worked out the accurate numerical friction models. But, the existing numerical models of the drawing may be large different from the actual conditions. In this paper, accurate analysis of the drawing process should be subjected. It is to develop accuracy of the numerical friction models and potentialize to apply for the high speed forming work in the drawing process. Therefore, the results should improve the accuracy, cause the energy saving for the drawing process and finally expand the applying areas of the results.

  • PDF

원형컵 드로잉 공정에 미치는 영향인지에 관한 실험적 연구 (Experimental Study on the Parameters Affect Cylindrical Cup Drawing Process)

  • 정동원;양경부;김광희
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.449-453
    • /
    • 1999
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, cylindrical cup drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF