• Title/Summary/Keyword: Drawing Ratio

Search Result 332, Processing Time 0.023 seconds

The Effects of Drawing Conditions on Physical Properties of the Drawn Worsted Yarns (II) (연신공정 조건이 소모연신사의 물성에 미치는 영향 (II))

  • Han, Won-Hee;Kim, Seung-Jin;Jo, Jin-Hwang
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • This effects of drawing conditions on the physical properties of the drawn worsted yarns were investigated. The drawn worsted yarns were made on the yarn drawing system with various drawing conditions such as concentration of reducing agent, draw ratio, setting time of drawn yarn and concentration of oxidizing agent. The dry and wet shrinkage, irregularity(CV%), thin and thick part, hairiness and abrasion resistance of these various specimens were measured and discussed in terms of various drawing conditions.

A Study on the Forming Process Design of Cylindrical Multithickness Shell (다단 벽두께 원통 쉘 성형 공정 설계에 관한 연구)

  • 신보성;최두선;김동진;김병민;한규택;신영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.943-948
    • /
    • 1996
  • In this paper. we will discuss in making large size cylindrical shells with multithickness wall sections such as straight, stepped, tapered sides. These shells are constructed of type 6061 O temper aluminum starting with a blanking size of 877 mm plate. Its diameter to length ratio of 1 to 2.78 and a 36.7% wall reduction is achieved by our continuous deep drawing process. This process required no in-process annealing. But after cold working, these shells is performed heat treatment to T6 condition. These shells are used for the making of seamless LPG pressure vessels after the spinning process. This process is composed of deep drawing, reverse redrawing, drawing-ironing and several ironing processes. In the verification of forming process design, we used DEFORM code.

  • PDF

A Study on the Behavior of Wrinkles in Cup Drawing with AL alloy (AL합금의 용기 성형시 주름의 거동에 관한 연구)

  • 김진무;최용식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.845-848
    • /
    • 2002
  • The wrinkling in the flange and wall of a part is a predominent failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding forco(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under 0.02mm in height. In general, the height of wrinkles could be limited under 0.2mm practically. Therefore small BHP can be allowed so that the depth of drawing could be increased. Authors research the variation of the wrinkles in flange in the course of cup drawing by using aluminium alloy Al050 and A5052.

  • PDF

Dependency on the Forming speed at the warm forming of magnesium sheet (마그네슘 판재 온간 딮드로잉성에서의 속도의존성)

  • Park, H.Y.;Lee, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.246-249
    • /
    • 2007
  • This study is concerned with deep drawability of magnesium sheets(AZ31B) at the warm conditions. Especially the dependency on forming speed has been investigated at the temperature of $200^{\circ}C$ and $300^{\circ}C$. Deep drawing test has been carried out at the temperature of $200^{\circ}C$ and $300^{\circ}C$. The die and blank holder are kept at test temperature by local heating and the punch is kept at room temperature by cooling technique. The magnesium sheets called AZ31B with the thickness of 0.5mm have been applied to deep drawing of circular cup. The drawability has been estimated at the conditions of forming speed (0.1, 1, 10 mm/sec). The results of deep drawing experiments show that the drawability is better at $300^{\circ}C$. Also the deep drawability is improved at the low speed(1mm/sec).

  • PDF

Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank (레이저 용접 소재의 디프 드로잉 성형특성 해석)

  • Kim, Yeong-Seok;Ha, Dong-Ho;Jeong, Gi-Jo;Seo, Man-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

Effects os Cold Drawing Ratio on the Hardness of Inconel 718 Wire (Inconel 718 선재의 경도에 미치는 냉간신선가공의영향)

  • Jeong, Yong-Kwon;Jo, Chang-Yong;Jung, Byong-Ho;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.354-358
    • /
    • 1998
  • Effect of cold drawing ratio and aging time on the hardness of lnconel 718 wire aged at 11l6K were investi¬gated by hardness measurement and scanning & transmission electron microscopy. Hardness which was 245Hv in as¬solution treated condition increased very rapidly to 450Hv as cold drawing ratio increased to 50%. The hardness in the early stage of aging was increased by the precipitation of $\gamma^{'}$ and $\gamma^{'}$ phases and after the peak hardness, the hardness was decreased by the transformation of $\gamma^{'}$ phase to $\delta$ phase. The time to reach peak hardness during aging appeared to be reduced with the increase of cold drawing ratio, and those times were 30, 10, and 5 minutes for 0, 30 and 50% cold drawn materials, respectively. For the 50% cold drawn material. $\gamma^{'}$ and $\gamma^{'}$ were precipitated by aging for 5 minutes at 1116K. The hardness in the same material was largely decreased under the initial hardness by the recrystallization.

  • PDF

Study on the Hydromechanical Reverse Redrawing Pprocess Assisted by Separate Radial Pressure (분리된 원주압 보조 액압유도 역 재드로잉공정에 관한 연구)

  • Kim, Bong-Jong;Lee, Dong-U;Yang, Dong-Yeol;Park, Chan-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3728-3740
    • /
    • 1996
  • High-quality cups of deep drawing ratio of more than four cannot be simply drawn by conventional drawing and redrawing processes. In the present study, after the first deep drawing process, subsequent hydromechanical reverse redrawing with controlled radial pressure is employed. In order to increase the deep drawing ratio up to muchmore than four, the radial pressure should be controlled independently of the chamber pressure and thus an optimum forming condition can be found easily by varying the radial pressure. The process has been subjected to finite element analysis by using the rigid-platic material modeling considering all the frictional conditions induced by the hydrostatic pressure. In order to consider the pressure effect on the sheet, the pressure distributions on the flange part and the side wall part are calculated mumerically from simplified Navier-stokes equation. The comparison of the computation with the experiment has shown that the finite element modeling can be conveniently emplyed for the design of the process with reliability from the viewpoint of formability.

Steady-Flow Characteristics of Bundle Fluid in Drawing (인발 집속유체의 정상유동 특성)

  • Huh You;Kim Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.612-621
    • /
    • 2006
  • Drawing is a mechanical operation attenuating material thickness to an appropriate level for the next processing or end usage. When the input material has a form of bundle or bundles made of very thin and long shaped wires or fibers, this attenuation operation is called 'bundle drawing' or 'drafting'. Bundle drawing is being used widely in manufacturing micro sized wires or staple yarns. However, the bundle processed by this operation has more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical laws containing physical variables, i.e. linear density and velocity as the dynamic state variables of the bundle fluid. The governing equations resulting from the modeling show that they appear in a slightly different form from what they do in a continuum fluid. Then, the governing equations system is simplified in a steady state and the bundle dynamics is simulated, showing that the shape of the velocity profiles depends on two model parameters. Experiments confirm that the model parameters are to be well adjusted to show a coincidence with the theoretical analysis. The higher the drawing ratio and drawing speed we, the more sensitive becomes the bundle flow to exogenous disturbances.

X-ray Diffraction Studies of Poly(aryl ether ether ketone) Fibers with Different Degrees of Crystallinity and Orientation

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.206-218
    • /
    • 2005
  • Structural studies of series of 'as spun' and drawn PEEK fibers have been carried out using X-ray diffraction and optical microscopy techniques. The analysis of results suggest that fibers produced at a constant draw ratio with increasing draw temperatures show enhanced orientation and crystalline behaviour. The resolved equatorial and meridional traces provide additional structural parameters in terms of crystallinity, crystallite size, and crystallite thickness. It is concluded that drawing at a temperature below $T_g(i.e.,\;144^{\circ}C)$ results in poorly oriented non-crystalline materials, whereas drawing above $T_g$ results in highly oriented semi crystalline materials. Additional drawing proved to increase the overall orientation with slight improvements in lateral order of the chain molecules. Quantitative analysis revealed that the crystallite size increases with increasing drawing temperature. The results also revealed the increased crystallite size upon additional drawing. Crystalline orientation parameter, $_c$, suggests almost perfect orientation. In all cases, the amorphous orientation is found to be lower than the overall orientation parameter obtained from the optical birefringence. As a result of additional drawing, crystalline orientation was found to increase slightly but the increase in the orientation of non-crystalline material was found to be substantial. An average crystalline density was determined from the orthorhombic unit cell dimensions. It was found to vary as a result of processing conditions. It was also found that the value of the maximum birefringence shows heavy dependence on the chain conformation.

Effect of Uniaxial Drawing Conditions on the Orientation of Poly (ethylene 2,6- naphthalate) (일축 연신 조건에 따른 Poly(ethylene 2,6-naphthalate) 배향에 관한 연구)

  • 진병석;이성효;이광희
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.699-706
    • /
    • 2001
  • The effects of uniaxial drawing conditions on the molecular orientation of poly (ethylene 2,6-naphthalate) (PEN) are investigated. Birefringence measurements show that the orientation is significantly enhanced at high draw ratio, low drawing temperature, and fast drawing speed. The characteristics of orientation examined by FTIR- ATR dichroism method represent almost same results. Amorphous orientation function increases with drawing rate at $120^{\circ}C$, but it decreases with drawing rate at $141^{\circ}C$. These behaviors can be explained with the relation between crystallization and chain relaxation rates. It is observed that the orientation of PEN film is accompanied by significant alignment of the naphthalene rings of PEN parallel to the film surface.

  • PDF