• 제목/요약/키워드: Drawing Process

Search Result 1,420, Processing Time 0.029 seconds

A Study on Requirements for the Automation of Standardized Rebar Shop Drawing (표준화된 철근배근도 작성 자동화를 위한 필요 사항에 관한 연구)

  • Kang, Pyeong-Doo;Ye, Sang-Min;Park, Kwang-Seob;Kim, Yun-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.105-112
    • /
    • 2013
  • An automation of standardized rebar shop drawing is necessary for easy application by improving workability, prompt preparation to field change request and easy revisions of shop drawing. Through investigating problem of current rebar shop drawing, we found that standardization of reinforcing detail, standardization of rebar expression and automation of rebar shop drawing program for the sake of designer is needed. We will investigate disagreement of reinforcing detail between building code and how worker build structure for standardization of reinforcing detail, demands of companies participated in rebar process for standardization of rebar expression and proper algorithm with selectable level of inputting data for automation of rebar shop drawing program for the sake of designer.

Thickness Distribution of Hemispherical Cup in Meso-Scale Deep Drawing Process (반구형 극소 드로인 제품의 두께분포 비교)

  • Lee, K.S.;Jung, H.K.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Meso-scale or micro-scale forming of sheet metal parts has been recently considered as one of the important forming technologies with growing demand on meso/micro products for electric or medical devices. Experimental investigation on the cylindrical meso-cup drawing with hemispherical punch is carried out to examine the limit drawing ratio and thickness distribution of drawn cups. The working parameters chosen in this study are blank diameter, die-corner radius and blankholding force. It is found from the experiments that the limit drawing ratio of 2.4 can be achieved in the case of hemispherical cup drawing and uniform thickness distribution in wider region can be obtained compared with the results of conventional cup drawing.

Precision Simulation of Drawing Processes Considering Back Pressing or Tension with Artificial Body Force Scheme (인위적 체적력 기법에 의한 후방 가압 및 인장을 고려한 인발공정의 정밀 시뮬레이션 기술)

  • Eom, J.G.;Shim, S.H.;Cho, J.M.;Kim, H.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.461-467
    • /
    • 2011
  • An artificial body force method is presented to accurately simulate drawing processes in which back pressing is exerted. A rigid-plastic finite element method is applied together with a numerical scheme to eliminate the numerically incurred plastic deformation in rigid or elastic region, which significantly influences simulation results because it eventually changes reduction of area in drawing. Back tension or compression is applied by body force at the rear part of material to obtain numerically stable solution. Two typical examples are shown, a drawing process with back tension applied and a tube drawing with a fixed plug and back pressing applied.

A Study on the Development of CAD/CAM System for Deep Drawing Transfer Die in Mechanical Press Process (기계식 프레스에서의 디프 드로잉 트랜스퍼 금형 자동설계 및 가공 시스템에 관한 연구)

  • 박상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1146-1149
    • /
    • 1995
  • The CAD/CAM System for deep drawing transfer die in mechanical press proess has been developed. The developed CAD system can generate the drawing of drawing of transfer die in mechanical press. Using these results from CAD system, it can generate the NC data to machine die's elements on the CAD system. This system can reduce design man-hours and human errors. In order to construct the system, it is used to automate the design process using knowledge base system. The developed system is based on the knowledge base system which is involved a lot of expert's technology in the practice filed. Using AutoLISP language under the AutoCAD system, CTK customer language of SmartCAM is used as the overall CAD/CAM environment. Results of this system will be provide effective aids to the designer and mannufacturer in this field.

  • PDF

축대칭 제품의 디프 드로잉 공정에 대한 금형설계 및 금형가공 시스템

  • Park, Sang-Bong;Choi, Young;Kim, Byung-Min;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.766-770
    • /
    • 1996
  • In this study, a CAD/CAM system for axisymmetric deep drawing processes has been developed. An approach to the system is based on the knowledge based system. Under the environment of CAD/CAM software of Personal Designer, the system has been written in UPL. The geometries of intermediate and final object in deep drawing process, including processes parameters are input for the CAD/CAM system. The input data can be obtained from the results of Pro-Deep. The parts drawing of die sets for each process is generatedin tool design module of the CAD/CAM system. Also, the die assemblydrawings can be obtained. NC commands for machining of the part can be generated in the developed CAD/CAM system.

  • PDF

An Exeprt Sytem for the Design and Manufacturing of the Deep Drawing Transfer Die (디프 드로잉 트랜스터 그형의 설계 및 제작에 있어서 전문가 시스템)

  • 박상봉
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • The CAD/CAM System for deep drawing transfer die tin mechanical press process has been developed. The developed CAD system can generate the drawing of transfer die in mechanical press. Using thee results from CAD system, it can generate the NC data to machine die's elements on the CAD system. This system can reduce design man-hour an human errors. In order to construct the system, it is used to automated the design process and generate the NC data using concepts of the designing rule and the machining rule. The developed system is based on the knowledge base system which is involved a lot of expert's technology in the practice field. Using AutoLISP language under the AutoCAD system, CTK customer language of SmartCAM is used as the overall CAD/CAM environment. Results of this system will be provide effective aids to the designer and manufacturer in this field.

  • PDF

Prediction of Earings in the Deep Drawing Processes of a Cylindrical Cup (원통컵 디프드로잉 공정의 귀발생 예측)

  • 이승열;이승열;금영탁;정관수;박진무
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.222-232
    • /
    • 1995
  • The planar anisotripic FEM analysis for predicting earing profiles and draw-in amounts in the deep-drawing process is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vector and normal contact pressure. The consistent full set of governing relations, which is comprising euilbrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameters. The linear triangular membrane elements are used for depicting the formed sheet. In the numerical simulations of deep drawing processes of a flat-top cylindrical cup for 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Blank Design for the General Shaped Deep Drawing Products by F.E.M (유한요소법을 이용한 임의의 단면 딥드로잉 제품의 소재형상설계)

  • Kim, Sang-Do;Park, Min-Ho;Seo, Dae-Gyo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.302-321
    • /
    • 1995
  • A method of determining an optimum blank shape for the non-circular deep drawing process is investigated. The rigid-plastic finite element method is introduced and the computer program code is developed. The ideal shape of a drawn cup with uniform wall height is assumed and metal flow is traced back-ward step by step to predict an initial blank shape of the ideal cup. For examples of the non-circular deep drawing products, three cases of drawn cup with quadrilateral punch shape are considered and optimum blank shapes for each case are proposed and compared with experimental results.

  • PDF

Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal (평면 이방성 박판 딥드로잉 공정의 귀발생 예측)

  • 이승열;금영탁;정관수;박진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

FE-Simulation on drawing process of $Al-1\%Si$ bonding wire considering influence of fine Si particle (미세 Si 입자의 영향을 고려한 $Al-1\%Si$ 본딩 와이어의 신선공정해석)

  • Hwang W. H.;Moon H. J.;Ko D. C.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.393-396
    • /
    • 2005
  • This paper is concerned with the drawing process of $Al-1\%Si$ bonding wire. In this study, the finite-element model established in previous work was used to analyze the effect of various forming parameters, which included the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle in drawing processes. The finite-element results gave the consolidation condition. From the results of analysis, the effects of each forming parameter were determined. It is possible to obtain the Important basic data which can be guaranteed in the fracture prevention of $Al-1\%Si$ wire by using FE-Simulation.

  • PDF