• Title/Summary/Keyword: Drainage pipe

Search Result 169, Processing Time 0.029 seconds

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.

Effects of the Drainage Methods on Antioxidant Compounds and Antioxidant Activity of Ethanolic Extracts on Adzuki Bean (논 재배 배수방법이 팥 에탄올 추출물의 항산화성분 및 항산화활성에 미치는 영향)

  • Woo, Koan Sik;Jung, Ki Yuol;Song, Seuk Bo;Ko, Jee Yeon;Lee, Jae Saeng;Choi, Young Dae;Yun, Eul Soo;Jung, Tae Wook;Oh, In Seok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.350-358
    • /
    • 2014
  • This study investigated the changes of antioxidant compounds and antioxidant activity of adzuki bean by drainage methods in poorly drained sloping paddy field. The soil moisture contents of under pipe and open ditch drainage on very poorly drained paddy soil were $18.52{\pm}4.58$ and $19.01{\pm}4.25%$, and imperfectly drained paddy soil were $14.87{\pm}4.82$ and $18.64{\pm}3.85%$, respectively. Moisture, protein, fat and ash contents of adzuki bean with drainage methods were 10.10~11.60, 14.13~21.75, 0.02~0.73 and 2.81~3.45 g/100 g, respectively. The total polyphenol, flavonoid and tannin contents, and radical scavenging activity of adzuki bean showed significant differences by drainage methods. The total polyphenol, flavonoid, and tannin contents by drainage methods were 2.73~4.14 mg GAE/g, 1.07~1.43 mg CE/g, and 1.27~1.84 mg TAE/g, respectively. The DPPH and ABTS radical scavenging activities were 2.84~4.47 and 5.11~6.74 mg TE/g, respectively. The antioxidant compounds and radical scavenging activity of the adzuki bean by drainage methods were frequently affected soil water.

A Physical Model Test on the Behavior of Shield-tunnel Lining According to Drainage Conditions in Weathered Granite Soil (화강풍화토 지반에서 배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.71-82
    • /
    • 2015
  • Recently, due to the expansion of urban infrastructure for the citizen convenience, the shield tunnel construction has increased considering the civil complaints minimization and construction stability. Most shield tunnels are designed based on the assumption of the undrained condition that underground water does not inflow, but they are operated in the field as drained tunnels with drainage facility to drain underground water. Therefore, the drained condition needs to be considered in the shield tunnel design. It is also necessary to consider the weathered granite soil that is widely distributed throughout the country and consequently is encountered in most of construction sites. In this paper, the model test which can control total stress and pore water pressure and simulate the underground tunnel located in the weathered granite soil below ground water level is conducted. Total stress, pore water pressure and an inflow water into an inner pipe were measured using the testing device. Test results showed that the total stress in a drained condition was lower than in an undrained condition because pore water pressure decreased in a drained condition and an inflow water into an inner pipe was proportional to the loading stress in a drained condition. As a result, if a drained condition is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

Study of flood prevention alternative priorities using MCDM (Multi-Criteria Decision Making) (MCDM을 이용한 홍수방어대안 우선순위 정립에 관한 연구)

  • Lim, Donghwa;Jeong, Soonchan;Lee, Eunkyung;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • Recently, due to global warming and climate change in Korea, local heavy storm occurs frequently. In this study, the risky areas for flooding in urban areas are analyzed for flood inundation based on two-dimensional urban flood runoff model (XP-SWMM) focusing on coastal high flood-risk urban areas. In addition, the MCDM (Multi-Criteria Decision Making) technique is utilized in order to establish the flood defense structural measures. The alternative flood reduction method are compared and the optimum flood defense measures are selected. A simulation model was used with three structural flood prevention measures (drainage pipe construction, water detention, flood pumping station). In order to decrease the flooding area, flood assessment criteria are suggested (flooded area, maximum inundation depth, damaged residential area, construction cost). Priorities of alternatives are determined by using compromise programming. As a result, the optimal flood defence alternative suggested for Janghang Zone 1 is flood pumping station and for Janghang Zone 2, 3 are drainage pipe construction.

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective (비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석)

  • Jee, Hee Won;Kim, Hyeonju;Seo, Seung Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.721-733
    • /
    • 2023
  • As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.

Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model (1D-2D 통합 도시 침수 해석 모형을 이용한 침수 원인 분석에 관한 연구)

  • Lee, Seungsoo;Noh, Seong Jin;Jang, Cheolhee;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.263-275
    • /
    • 2017
  • Integrated numerical approaches with physically-based conceptualization are required for accurate urban inundation simulation. In this study, we described, applied and analyzed an integrated 1-dimensional (1D) sewerage system and 2-dimensional (2D) surface flow model, which was suggested by Lee et al. (2015). This model was developed based on dual-drainage concept, and uses storm drains as an discharge exchange spot rather than manholes so that interaction phenomena between surface flow and sewer pipe flow are physically reproduced. In addition, the building block concept which prevents inflows from outside structures is applied in order to consider building effects. The capability of the model is demonstrated via reproducing the past flooding event at the Sadang-cheon River catchment, Seoul, South Korea. The results show the plausible causes of the inundation could be analysed in detail by integrated 1D-2D modeling.

Study on the effects of crop-yields under subsurface drainage system in the water-logging paddy fields (저수지에 있어서 암거배수 방법이 작물수량에 미치는 효과에 관한 시험연구)

  • 서승덕;김조웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.3
    • /
    • pp.4449-4461
    • /
    • 1977
  • Subsurface Drinage Problems arise from many causes. Flatland tends to be poorly drained, particularly where the subsoil permeability is low. There are many wet areas, however, where there is no evident connection between the area of seepage, or a high water table, and the topography of the site. High water tables may occur where the soil is either slowly or rapidly permeable, where the climate is either humid or arid, and where the land is either sloping or flat. This study is to bring light on subjects relating to increasing yield of crop and possibility of double crops a year in water logging paddy fields. Obtained results are briefly summarized as follows: 1. Effect of crop-yield in the plot A resulted 20.2 percent higher than the ordinary plot with yield of brown rice. 2. Possibility of double-crops a year is investigated. Effect of the barley production of the test plot resulted 168.2 percent higher than the other uplands near test plot with the yield of 1977 production and it is 3.8 percent higher compare with the yearly yields. 3. Decreasing depth of water level was measured 23.9mm per day and 14.3mm per day at the test plot and ordinary plot respectively and the amounts of subsurface drainage measured 30mm to 35mm per day. It is required that the relief well should be controled carefully and adequately. 4. Mean depth of ground water levl was measured 0.4∼0.5m regardless the width of corrugated pipe. It is significantly lowere than the ordinary plot(0.15∼0.20m) 5. The ground temperature of the test plot is higher 1 degree of centigarade or more than the ordinary plot and soil moisture content of the ordinary plot is higher 12.4∼27.8 percent than the plot reversely. There should be a relationship between rising of ground temperature and soil moisture.

  • PDF

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Effect of infiltration/inflow by rainfall for sewerage facilities in the area with partially separate sewer system (불완전 분류식 하수처리구역의 강우에 의한 하수도시설의 침입수/유입수 영향 분석)

  • Shin, Jungsub;Han, Sangwon;Yook, Junsu;Lee, Chungu;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.177-190
    • /
    • 2019
  • The purpose of this study was to analyze the effects of sewerage facilities through I/I analysis by rainfall by selecting areas where storm overflow diverging chamber is remained due to the non-maintenance drainage equipment when the sewerage system was reconstructed as a separate sewer system. Research has shown that wet weather flow(WWF) increased from 106.2% to 154.8% compared to dry weather flow(DWF) in intercepting sewers, and that the WWF increased from 122.4% to 257.6% in comparison to DWF in storm overflow diverging chamber. As a result, owing to storm overflow diverging chamber of partially separate sewer system with untreated tributary of sewage treatment plant, rainfall-derived infiltration/inflow(RDII) has been analyzed 2.7 times higher than the areas without storm overflow diverging chamber. Meanwhile, infiltration quantity of this study area was relatively higher than that of other study areas. Therefore, it is necessary to reduce infiltration quantity through sewer pipe maintenance nearby river. Drainage equipment maintenance should be performed not to operate storm overflow diverging chamber in order to handle the appropriate sewage treatment plant capacity for rainfall because it is also expected that RDII due to rain will occur after maintenance. In conclusion, it is necessary to recognize aRDII(allowance of rainfall-derived infiltration/inflow) and to be reflected it on sewage treatment plant capacity because aRDII can occur even after maintenance to the complete separate sewer system.

Evaluation of water drainage according to hydraulic properties of filling material of sand dam in Mullori, Chuncheon (춘천 물로리 지역 샌드댐 채움재 수리특성에 따른 배수량 평가)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Min-Gyu;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.923-929
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area of water welfare where local water supply is not supplied, and it is supplying water to the villages with small water supply facilities using lateral flow and groundwater as water sources. This is an area with poor water supply conditions, such as relying on water trucks due to water shortages during the recent severe drought. Therefore, in order to solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed along the valley, and this facility has been operating since May 2022. In this study, repeated simulations were performed according to the hydraulic conductivity of the filler material and the storage coefficient value for the inflow condition for about two years from mid-March 2020 to mid-March 2022. For each case, the amount of discharge through the perforated drain pipe was calculated. Overall, as the hydraulic conductivity increased, the amount of discharge and its ratio increased. However, when the hydraulic conductivity of the second floor was relatively low, the amount of discharge increased and then decreased as the hydraulic conductivity of the third floor increased. This is considered to be due to the fact that the water level was kept low due to the rapid drainage compared to the net inflow into the third floor because the water permeability of the third floor and the drainage coefficient of the drain pipe were large. As a result of simulating the flow of the open channel in the upper part of the sand dam as a hypothetical groundwater layer with very high hydraulic conductivity, the decrease in discharge rate was slower than the increase in the hydraulic conductivity of the hypothetical layer, but it was clearly shown that the discharge volume decreased relatively as the hydraulic conductivity of the virtual layer increased.