• 제목/요약/키워드: Drainage pipe

검색결과 168건 처리시간 0.02초

집.배수용 투수성 폴리머 콘크리트 관의 농업 수리시설물의 현장적용 (Field Application of Permeable Polymer Concrete Pipe for Drainage)

  • 민정기;연규석;성찬용
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.136-143
    • /
    • 2003
  • This study is performed to evaluate performance of the developed pipe when using for underground drainage in fm land, the efficiency of the pipe is examined such as quantity of drainage, water temperature and other field performance in all weather condition. Results of this study, the higher permeability through wall of the pipe is achieved by making various size pores using open-graded aggregate. And in all weather conditions, permeable polymer concrete pipe perform much better than conventional perforated pipes. During rice farming period, quantity of drainage the permeable polymer concrete pipe is 1.25 time greater than conventional perforated pipes. Therefore, use of the permeable polymer concrete pipe is greater advantages when considering collecting and draining capacity compared with conventional perforated pipes.

관재료 및 피복재료별 농경지 암거배수 효과 분석 (Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material)

  • 정상옥
    • 한국농공학회지
    • /
    • 제37권5호
    • /
    • pp.53-61
    • /
    • 1995
  • Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material are made by the laboratory experiments using soil box to give basic information for the subsurface drainage system planning and design. Three different diameter PVC perforated pipes and a mesh pipe are used with envelop materials such as sand, rice bran, and crushed stone. Steady state subsurface drainage flow rate increased as envelop material changed from sand to rice bran and crushed stone. This indicates that as the hydraulic conductivity of the envelop material increases, the drainage flow rate increases. On the other hand, for a given envelop material, the mesh pipe which has the largest openning area shows the largest flow rate while small diameter PVC pipes show small flow rates. This tells that as the openning area and pipe diameter increase, the flow rate increases, too. Therefore, selection of pipe and envelop material should be made in accordance with the design drainage flow rate. Unsteady state subsurface drainage flow rate with respect to time differs for different envelop material. In case the sand was used as an envelop material, the small diameter PVC pipes show larger flow rates than the large diameter PVC pipe and mesh pipe. When the rice bran was used, the mesh pipe shows the largest flow rate, while small diameter pipes show smaller flow rates. In case the crushed stone was used as an envelop material, the large diameter PVC pipe and mesh pipe show larger flow rates, while small diameter pipes show a little bit smaller flow rates. However, the variation of flow rates among different pipes is the smallest when the crushed stone is used. The flow rate curve with respect to the pipe changes little for the crushed stone envelop which has a large hydraulic conductivity, while that changes much for the sand and rice bran envelops. However, it is difficult to draw a consistent relationship between the drainage flow rate and pipe for all the envelop materials. Since the subsurface drainage experiments are made only under the restricted laboratory condition in this study, further study including field experiment is required.

  • PDF

천공장치를 이용한 배수설비 연결관 시공 기술에 관한 연구 (A Study for Drainage Pipe Construction Method using a Boring Machine)

  • 장재구;강선홍;김동은;정태호
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.869-875
    • /
    • 2011
  • Ministry of Environment has been promoting BTL business of the sewer rehabilitation which continues from 2005 up to now. Sewer rehabilitation is classified into three parts : wastewater pipe rehabilitation, rainwater pipe rehabilitation and drainage equipment rehabilitation. Drainage equipment rehabilitation is that drainage pipe connects wastewater pipe directly without water-purifier. In the drainage equipment construction, it is inevitable to have the damage of ground structures(wall, gate and U drain, etc) when an open excavation method is used. Therefore it is necessary to develop non-excavation method to connect drainage pipe and wastewater pipe like jacking method to avoid the damage of ground structure. This paper has conducted an analysis of the non-excavation method using a boring machine attached to backhoe, which is issued the verification certificate of environmental technology according to the Development of and Support for Environmental Technology Act, article.7. The index set in this analysis was sectionalized to the condition of construction, the grade of drainage pipe, the size of excavated hole, the amount of waste cement concrete and asphalt concrete and the benefit effect compared to open excavation method.

왕겨충전에 따른 암거의 제염 효과 (Desalinization Effect of Subsurface Drainage System with Rice Hull Packing)

  • 이승헌;안열;류순호;정영상
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.63-69
    • /
    • 2001
  • The main purpose of this study is to seek desalinization effect of subsurface drainage system with rice hull packing in Dae-Ho Reclaimed Land. After 4 years installed sub-surface drainage system, distribution of drained water electric conductivity (ECw) was 4.43~12.78 ds/m. The soil profile showed partial development of the soil structure and compaction of subsoils with increased bulk density. The bulk density of the subsoil was 1.42~1.66 g/cm$^3$, which might limit root growth. The soil color changed near the drainage pipe line. Distribution of soil extract solution ECe and SAR as subsurface drainage pipe position and drainage canal distance showed desalinization effect of subsurface drainage system with rice hull packing as widening effective zone of subsurface drainage pipe.

  • PDF

배수효율이 높은 지하암거의 간격과 주름유공관의 통수능 비교분석 (A Comparative Study on the Spacing and Discharge Performance of Subsurface Drainage Culvert to Increase Drainage Efficiency)

  • 김현태;유전용;정기열;박영준
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.67-72
    • /
    • 2019
  • This study compared the theory of a culvert spacing and analytical results of the seepage flow for the subsurface drainage. i) If culvert spacing (Sc) is within 5 m, the unit drainage (q) is very larger; in contrast, if Sc is 5 m or more, there is very little drainage in the middle between drains. Therefore, the drain spacing should be within 5 m to ensure high drainage efficiency. ii) Since the planned culvert drainage increases linearly with the soil's permeability coefficient (k), k must be taken into account when determining the drain diameter by the planned culvert drainage. iii) As a result of analyzing the drainage performance of the absorbing culvert, the drainage performance is sufficient with the diameter of the corrugated drain pipe Dc = 50 mm at the length of the drain Lc = 100 m. iv) Therefore, if the drain spacing (Sc) is less than 5 m using the low-cost non-excavated drainage pipe method (${\Phi}50mm$ the corrugated drain pipe and fiber mat) rather than the conventional trench drain method (Sc > 10 m, Dc > 100 mm), uniform and high drainage efficiency can be ensured as well as low construction cost. v) The sub-irrigation+drainage culvert requires narrower drain spacing (Sc < 2-3 m) for irrigation. As a result of examining the condition of 35 mm in diameter (Dc) and 2~3 m in drain spacing, it is possible to apply the non-excavated drainage pipe method to the sub-irrigation+drainage culvert because drainage performance is sufficient at the drain length Lc = 50 m.

구배가 없는 신배수시스템의 제안 및 배수유동 특성에 관한 실험적 연구 (The Proposal of a New Drainage System without Incline of Piping and Experiment on Drainage Flow Characteristics)

  • 차영호;이정재
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.452-458
    • /
    • 2005
  • In Korea, pumping pipe using gravity way by water is most popular method in drainage system. But, it is difficult to repair a drainpipe in this method because the drain pipe diameter is increased as using this method. In this research, we propose a new drainage system. The system aim for an adaptedness with buildings, freedom of plan, construction and renewal in water pipe equipments, etc. The new system is not need of incline of piping, and it uses drainage power that is changed potential energy by high velocity flow as making Siphonage at vertical pipe. Therefore, the diameter of piping can decreased than existing piping system established in the ceiling. Also because connecting position will be located at the lower part, it is changed the potential energy of drainage to the high velocity flow. In addition, drainage will be smooth because the fixture drain is linked by each drain pipes.

대변기 세정시 발생하는 배수소음의 특성변화에 관한 연구 (A Study on Changes in Characteristics of Drainage Noise from Water Closet Washing)

  • 설수환;정철운;김재수
    • 설비공학논문집
    • /
    • 제19권11호
    • /
    • pp.789-796
    • /
    • 2007
  • It has been noted, in case of the apartments in collective form, the drainage noise from cleaning of toilet causes many problems in the basement and adjacent rooms, mainly hampering the pleasant housing environment. The problems are increasingly raised by civil complaints with the public offices. Therefore, if the drainage noise generates when wash out of toilet bowl is grasped how the characteristics change according to the sorts of drainpipe, it is considered that the establishment of an effective sound insulation countermeasure could be possible when a civil petition against the drainage noise of apartment house is submitted hereafter. On such viewpoint, this study measured and analyzed the characteristics of drainage noise per the type of drainage pipe, according to KS A ISO $1996-1{\sim}3$, with the horizontal branch pipe and riser pipes in the drainage noise experiment chamber which has the characteristics of the anechoic room. In the result, the pipe type with excellent noise reduction function. The result of this study is considered to become available as fundamental data, to take actions on reduction of drainage noise of the ceiling piping method.

터널 배수공의 재질에 따른 스케일 부착 특성에 관한 연구 (Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel)

  • 주익찬;남승혁;백승인;정혁상;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제12권11호
    • /
    • pp.51-57
    • /
    • 2011
  • 지하수에 의하여 터널 내로 유입된 수산화칼슘($Ca(OH)_{2}$)이 이산화탄소($CO_{2}$)와 차량의 배기가스($SO_{3}$) 등과 반응하여 그 반응물이 터널의 배수공 내에 침전되어 배수공 클로깅 현상이 발생하였다. 대부분의 반응물은 화학분석 결과 칼사이트의 탄산칼슘 ($CaCO_{3}$)인 것으로 나타났다. 본 연구에서는 일반적으로 터널의 배수공으로 사용되는 PVC관과 새로운 재질의 배수공인 테프론 코팅강관, 실리콘오일 코팅관, 아크릴관에 CaO 수용액과 터널 배수공 유출수를 흘려보내어 스케일 부착형태를 분석함으로써 배수공의 재질이 스케일 부착에 미치는 영향을 연구하였다. 그 결과 PVC관에서 가장 많은 양의 스케일이 생성되었고 아크릴관, 실리콘오일 코팅관, 테프론 코팅강관의 순으로 관 표면에 스케일이 적게 부착되었다. 그러나 장기적 시험결과 테프론 코팅강관의 경우 관표면이 터널 유출수에 포함되어 있는 토사로 인하여 손상되어 코팅재의 탈락, 강관의 부식 등이 발생하여 내구성에 문제가 있었다.

자화장치와 퀀텀스틱을 이용한 노후터널의 배수공내 침전물 방지 방법 (The Control Method of Scale in Drainage Pipe of Deteriorated Tunnel used Magnetic Field and Quantum Stick)

  • 남중우;이창기;이종휘;도종남;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제12권11호
    • /
    • pp.59-64
    • /
    • 2011
  • 배수공의 막힘 현상은 노후화된 터널의 가장 큰 문제점으로 보수 대책 공법이 시급한 실정이다. 현재는 Water Jet Cleaning과 배수공내 초고압수를 분사하는 방식 등으로 배수공내 생성된 스케일을 제거하고 있다. 하지만 이러한 공법은 비용이 비싸고 주기적으로 관리가 필요하다는 단점을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하고 영구적으로 배수공내 침전물 생성을 방지하기 위하여 자화장치와 퀀텀스틱 신기술을 적용하여 배수공내 스케일의 주성분인 탄산칼슘($CaCO_{3}$) 침전물을 SEM분석과 XRD분석을 통하여 관찰하였다. SEM분석과 XRD분석 결과, 자화장치를 적용하였을 경우 탄산칼슘($CaCO_{3}$)의 생성입자가 Calcite에서 Aragonite로 변화하는 것을 볼 수 있었으며, 퀀텀스틱의 경우에도 육안으로 관찰하였을 경우 스케일의 생성량이 확연히 줄어들었음을 볼 수 있었다. 전반적으로, 자화장치와 퀀텀스틱을 이용하여 배수공 내 침전물 생성을 방지하는데 효과가 있음을 확인할 수 있었다.