• Title/Summary/Keyword: Drainage flow

Search Result 510, Processing Time 0.026 seconds

A Study on mine drainage characteristcs as abandoned Coal mine in Gyeongsang province (경상도 일대의 폐탄광 갱내수의 수질 특성 연구)

  • Jung, Young-Kook;Hong, Ji-Hye;Lee, Dong-Jin;Kim, Jeong-Phill;Kim, Dae-Gi;Joo, Sang-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1440-1445
    • /
    • 2008
  • There are 21 abondoned coal mines drained out mine water in gyeong sang do. We monitored the water quality of 31 mine drainage from 1995. The most of mine drainage was neutral as the average pH was 6.22 and Fe, Mn, Al concentration was below 10mg/L. The result showed the tendency of decreasing of flow and metal concentration. The highest Mn concentration was detected in bonghwa area and the hightest Fe concentration was detected in munkyung area. It means that the water quality is closly related to geological features.

  • PDF

Cerebellar Hemorrhage due to a Direct Carotid-Cavernous Fistula after Surgery for Maxillary Cancer

  • Kamio, Yoshinobu;Hiramatsu, Hisaya;Kamiya, Mika;Yamashita, Shuhei;Namba, Hiroki
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.1
    • /
    • pp.89-93
    • /
    • 2017
  • Infratentorial cerebral hemorrhage due to a direct carotid-cavernous fistula (CCF) is very rare. To our knowledge, only four such cases have been reported. Cerebellar hemorrhage due to a direct CCF has not been reported. We describe a 63-year-old female who presented with reduced consciousness 3 days after undergoing a maxillectomy for maxillary cancer. Computed tomography showed a cerebellar hemorrhage. Magnetic resonance angiography showed a left-sided direct CCF draining into the left petrosal and cerebellar veins through the left superior petrosal sinus (SPS). Her previous surgery had sacrificed the pterygoid plexus and facial vein. Increased blood flow and reduced drainage could have led to increased venous pressure in infratentorial veins, including the petrosal and cerebellar veins. The cavernous sinus has several drainage routes, but the SPS is one of the most important routes for infratentorial venous drainage. Stenosis or absence of the posterior segment of the SPS can also result in increased pressure in the cerebellar and pontine veins. We emphasize that a direct CCF with cortical venous reflux should be precisely evaluated to determine the hemodynamic status and venous drainage from the cavernous sinus.

Status of Water Infrastructure and Future Tasks in Jeollabuk-do Province(Focussed on the Mangyeong River and Dongjin River) (전라북도 물이용 체계 및 과제(만경강과 동진강 중심으로))

  • Kim, Boguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2022
  • Mangyeong River and Dongjin River are highly dependent on external regions for domestic and agricultural water, and the agricultural water supply and use system of those rivers are very complicated. For smooth water supply, rivers are used as a supply system. Of the total river water use permits (as of 2019), agricultural water accounts for 97.5%, 80.4% in Mangyeong River and Dongjin River, respectively. The excessive intake of river water as agricultural purpose is causing the stream to dry out and to deteriorate the ecological health of the river. It is necessary to minimize the water use system that takes in and utilizes river water. In both rivers, the flow rate of agricultural drainage and the load of major water quality items that flowing into the main stream are similar to or higher than those of the major tributaries, indicating that management is necessary to improve the water quality of the river. It is necessary to understand the effect of agricultural drainage on river water quality by establishing a continuous monitoring system for the form of agricultural drainage.

Return flow analysis of paddy field by water balance method (물수지분석 기법에 의한 논에서의 회귀율 조사분석)

  • 정상옥;손성호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.59-68
    • /
    • 2001
  • A water balance analysis was performed for a paddy field neighboring the Dongchang stream, downstream of the Unmun reservoir, which is constructed for the urban water supply. Daily rainfall data were collected and irrigation water flow rate, drainage flow rate, evaportranspiration, infiltration, and piezometeric head were measured in the field. The flow rates were continuously observed by water level logger during the growing season. The evaportranspiration and the infiltration were measured by N-type depletion meter and cylindrical infiltrometer, respectively. PVC pipes with 12mm diameter were used for piezometric head measurement. Total Irrigation and drainage flows were 3,608mm and 1,170mm in 1999, and 3,971mm and 1,548mm in 2000, respectively. The mean and range of the daily infiltration rate were 4.4mm/d and 3.4mm/d to 5.5mm/d in 1999 and 5.1mm/d and 4.1mm/d to 6.5mm/d in 2000, respectively. The net ground water flow including the change of soil water storage was 2,855mm in 1999 and 2,540mm in 2000. The evapotranspiration was 458.3mm in 1999 and 553.5mm in 2000. The range of daily evapotranspiration rate was from 1.6 to 8.7mm/d. The return flow ratio was about 32% in 1999 and 39% in 2000 and three year average was 35% including previous study in 1997. The amount of irrigation water was much higher than design standards or references in this study, This was caused by the inadequate water management practice in the area where water was oversupplied on farmers’ request rather than following sound water management principles.

  • PDF

Urban Inundation Analysis by Applying with GIS (GIS를 이용한 도시지역 침수해석)

  • Lee, Chang-Hee;Han, Kun-Yeun;Kim, Ji-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • The purpose of this study is to develop an urban inundation model using GIS(geographic information system). The model is combining a storm sewer system model and a overland-flow model for the estimation inundation depth in urban area caused by the surcharge of storm sewers. SWMM(storm water management model) was employed to resolve the storm sewer flow and to provide the overflow hydrographs caused by the failure of a drainage system due to the shortage of drainage capacity. The level-pool overland-flow model and DEM based overland-flow model were used to calculate the detail inundation zones and depths due to the surcharge on overland surface. The simulation results can help the decision preventing flood damages by redesigning and enlarging the capacities of storm sewer systems in the inundation-prone areas. The model can also be applied to make the potential inundation area map and establish flood-mitigation measures as a part of the decision support system for flood control authority.

  • PDF

Enhancing maintenance performance of tunnel drainage using vibration from polyvinylidene fluoride(PVDF) film (압전필름의 진동을 활용한 터널배수재 유지관리 성능 개선)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Song, Young-Karb;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.822-826
    • /
    • 2015
  • This study investigated the possible use of vibration from polyvinylidene fluoride(PVDF) film to enhance the performance of the deteriorated tunnel drainage due to physical/chemical clogging of the fine particles through a series of laboratory experiments. The test program was consisted of two different experiments, fundamental investigation and drainage model test. In the fundamental investigation, flow of clay slurry mixed with 50% water (freshwater and brine) on PVDF film with various frequencies was examined. In the model tests, slurry clogging to the woven fiber attached to drainage pipe and its reduction by vibration was investigated. Results of the experiment show that vibration from PVDF film enhances the drain performance significantly. Based upon the investigation, it gives an essential data that are needed for a potential use of hybrid drainage system with PVDF.

Effects of Subwatershed Delineation on SWAT Estimation (소유역구분이 SWAT 예측치에 미치는 영향 평가)

  • Heo, Seong-Gu;Kim, Gi-Seong;An, Jae-Hun;Im, Gyeong-Jae;Choe, Jung-Dae
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.262-273
    • /
    • 2006
  • The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and sediment simulation worldwide. In most cases, the SWAT model is first calibrated with adjustments in model parameters, and then the validation is performed. However, very little study regarding the effects on SWAT estimation of subwatershed delineation was performed. Thus, the SWAT model was applied to the Doam-dam watershed with various threshold values in subwatershed delineation in this study to examine the effects on the number of subwatershed delineated on SWAT estimation. It was found the flow effect of subwatershed delineation is negligible. However there were huge variations in SWAT estimated sediment, T-N, and T-P values with the use of various threshold value in watershed delineation. Sometimes these variations due to watershed delineation are beyond the effects of parameter adjustment in model calibration and validation. The SWAT is a semi-distributed modeling system, thus, the subwatershed characteristics are assumed to be the same for all Hydrologic Response Unit (HRU) within that subwatershed. This assumption leads to variations in the SWAT estimated sediment and nutrient output values. Therefore, it is strongly recommended the SWAT users need to use the HUR specific slope length and slope value in model runs, instead of using the slope and the corresponding slope length of the subawatershed to exclude the effects of the number of subwatershed delineated on the SWAT estimation.

  • PDF

A Numerical Modeling of Surcharged Manhole Flow with the Consideration of the Energy Loss Coefficient (과부하 맨홀의 손실계수를 고려한 흐름의 수치모형)

  • Kim, Kyoung Beom;Kim, Jung Soo;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.521-528
    • /
    • 2013
  • Urban drainage systems are generally designed as open channel flow. The system, however, shows a partially surcharged flow in its body, especially at junctions or manholes. Thus, a special case of this condition needs to be explained as pressurized flow condition for designing the sewer system. This study considered the surcharged manhole flows during an unexpected rainfall event or an excess of design frequency. Overflows from surcharged manholes and urban flooding can occur from the effect of surcharged flows. Thus, sewer systems should be designed with the concept of open channel flow and pressurized flow. Also, energy losses in a manhole need to be considered. The aim of this study is to develop the numerical model which can evaluate the effect of the energy losses at the manhole. The numerical model was verified and compared with hydraulic model and SWMM. The results showed that the water depth of numerical model was in good agreement with hydraulic model at the each manhole. However, the SWMM underestimated the water depth because that model ignored the energy losses at manholes. Thus, the developed numerical model in this study could be a useful tool for the assessment of a conveyance of urban drainage system.

Analysis of Variation for Drainage Structure with Flow Direction Methods Based on DEM

  • Meiyan, Feng;Kahhoong, Kok;Kim, Joo-Cheol;Kwansue, Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.325-325
    • /
    • 2018
  • The main purpose of this study is to suggest the more reliable flow direction methods within the framework of DEM by investigating the existing methodologies. To this end SFD(single flow direction method), MFD(multiple flow direction method) and IFD(Infinite flow direction method) are applied to determination of flow direction for water particles in Jeonjeokbigyo basin, and then assessed with respect to the variation of flow accumulation. As the main results the different patterns of flow accumulation are found out from each application of flow direction methods. As the flow dispersion increases on DEM contributing areas to outlet grow in sequence of SFD, IFD, MFD but contribution of individual pixels into outlet decreases. Especially MFD and IFD tend to make additional hydrologic abstraction from rainfall excess due to the flow dispersion within flow paths on DEM. Based on parameter estimation for power law distribution by maximum likelihood flow accumulation can be thought of as scale invariance factor. Combination of several flow direction methods could give rise to the more realistic water flow on DEM through separate treatment of flow direction methods for dispersion and aggregation effects of water flow within different topographies.

  • PDF

Applicable Road Design Method of Debris-Flow Control Structure (토석류 차단시설의 도로적용 설계 방안)

  • Lee, Yong-Soo;Kim, Jin-Hwan;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.243-246
    • /
    • 2009
  • Localized rainfall due to abnormal climate has caused extensive damages killing several tens to hundreds of people for yearly basis. The typhoon 'Lusa' of year 2002 has resulted 5,400 billion won of property damage and the damages for roads were approximated to be 2,860 billion won at 12,377 locations holding 53% damage of total. The recent typhoon, 'Aewinia' of yeat 2006 caused the 1,400 billion-won property damage including sweeping and flooding of 127 roads and 65 rivers, respectively. There are needs to minimize the damages for important structures for repeated heavy rainfalls every year and, especially, because debris flow might be a main cause of road damage, the design criteria and guideline for roads are required to be improved. Therefore, this paper presented design method of debris-flow control structure for road protection.

  • PDF