• Title/Summary/Keyword: Drainage effects.

Search Result 437, Processing Time 0.025 seconds

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.

Effects of Materials of Drainage Layer at the Reclaimed Soil Base on Tree Growth at the Open Space of Saemangeum Sea Dike (새만금 방조제 개활지의 준설토 기반에 대한 배수층재 처리가 수목 생육에 미치는 효과)

  • Lee, Hanna;Lim, Joo-Hoon;Koo, Namin;Bae, Sang-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • This study was performed to compare the effects of different drainage layers on tree growth at the exposed sites of Saemangeum sea dike. 4 types of drainage layers including control(dredged soil), specially prepared bark, gravel, and wood chip were set in 150~165cm depth of soil. Pinus thunbergii and Celtis sinensis were planted after 9 months of soil treatment. Electrical conductivity(EC) of soil in all treated plots were decreased under $4dS{\cdot}m^{-1}$, and NaCl(%) was decreased under 0.05% after 1 year from soil treatment. Soil moisture at the 120cm depth of the bark treated plot was higher than that of the 180cm soil depth, below the drainage layer. It is considered that vertical mobility of water was inhibited. Organic matter(OM) at the 120cm soil depth increased at bark and wood chip treated plots. Survival rates after 4 years of P. thunbergii and C. sinensis were 100% in all treatments. The height of P. thunbergii was not significantly different among the treatments while the height of C. sinensis was significantly different among the treatments and it was highest at the bark treated plot.

Evaluation on Drainage Capacity of Cylindrical Drain with Different Core Shapes (코아형식에 따른 원통형 배수재의 구멍막힘에 의한 배수능력 평가비교)

  • Lee Kwang-Yeol;Nugroho David Setiawan;Yun Sung-Tae;Ji Ho-Yeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.311-315
    • /
    • 2006
  • Various core shapes of cylindrical drains are used for accelerating primary consolidation for soft clay deposits, but serious harmful disadvantages on drainage capacity may occur on cylindrical drains due to confining Pressure when they are installed in that soil. In this study, two different core shapes of cylindrical drain are used to evaluate the drainage capacity with consideration of clogging effects on their filter jackets for an applied confining pressure. Column tests with radial drainage system were conducted under confining pressure of 50 kPa for 13 days. Two parameters which are discharge and accumulated volume of water drained were measured as the time elapsing. From this experimental study, the results showed that at the Initial stage before the clogging developed enough, the cylindrical drain with angular-type-plastic-core could produce discharge twice higher (maximum) than those with round-type. After 13 days had passed on, cylindrical drain with angular-type-plastic-core could produce discharge only 20% higher than those with round-type one. Eventually, there is a possibility that the efficiency of using angular-type-cylindrical-drain will be similar to the round-type one as the clogging develops more.

  • PDF

A Study on the Noise and Condensation Characteristics of Complex Structure Drainage Pipe Materials (복합 구조형 배수 배관재의 소음 및 결로 특성에 관한 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2016
  • The present study investigates noise and condensation characteristics of polyvinyl chloride (PVC), which is widely used for drainage piping materials, complex double structure by comparing to those of PVC single structure piping materials. In addition, effects of insulation on drainage noise has been measured experimentally. As the results of the experiments, noise reduction effect of PVC complex double structure is superior to that of PVC single structure in terms of elbow and vertical piping materials which are employed for drainage pipes of toilet bowls and bathtub. The insulation barely have effect on the noise reduction in case of the PVC single structure since there is almost no changes in noise occurrence even though the insulation is applied on both elbow and vertical piping materials. Temperature differences between inside and outside of the pipes have been measures for the PVC single and complex double structures as well. In consequence, outside temperature of the PVC complex double structure is higher than that of the PVC single structure. The condensation occurrence time of the PVC complex double structure shows a distinct difference from that of the PVC single structure, thus, the PVC complex double structure has outstanding effect on preventing the condensation.

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

Effects of Heavy Metal Contamination from an Abandoned Mine on Tomato Growth and Root-knot Nematode Development

  • Park, Byeong-Yong;Lee, Jae-Kook;Ro, Hee-Myong;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.266-271
    • /
    • 2011
  • Physicochemical characteristics and heavy metal content of soils located along the drainage way of an abandoned mine at Busan, Korea ($35^{\circ}31'N$, $129^{\circ}22'E$) (contaminated soil; CS) and uncontaminated soils (50-70 m apart from the drainage way) (NS) were examined. Growth of tomato plants (Solanum lycopersicom cv. Rutgers) in CS and NS, development of the root-knot nematode (Meloidogyne incognita) as root-knot gall formation on tomato plants, and non-parasitic nematode populations in soil were also examined. Growth of tomato plants, root-knot gall formation, and non-parasitic nematode populations were significantly reduced in CS with higher As content, lower pH, higher electrical conductivity (EC), and lower available phosphate (av. $P_2O_5$) than in NS. None of the other physicochemical characters examined differed significantly between CS and NS (low and no significance) and were above or below the critical levels detrimental to plant growth and nematode development, suggesting that As may be the primary hazardous heavy metal in CS. The toxicity of As might be enhanced at low pH in CS because exchangeable forms of some heavy metals increase with the decrease of soil pH. The heavy metals, especially As, may have contributed to increasing EC and decreasing av. $P_2O_5$. Therefore, the effects of mine drainage contamination from the abandoned mine were derived primarily from contamination by heavy metals such as As. These may have been enhanced in toxicity (solubility) by the lowered pH, increased soil salinity (EC) and decreased av. $P_2O_5$. Our results suggest synergistic adverse effects on the plant and the nematode by decreasing osmotic potential and nutrient availability.

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Effects of Heavy Rain during Rainy Season and Drainage Methods on Soil Water Content, Photosynthesis Characteristics, and Growth in 'Jinok' and 'Campbell Early' Grapes (장마기 집중호우와 배수방법이 토양수분 및 포도 '진옥'과 '캠벨얼리'의 광합성 특성과 생육에 미치는 영향)

  • Choi, Young Min;Jung, Sung Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, it is increasing the grape farm which is converted from paddy field to orchard. These soil which are poor drainage extremely also can be damaged a lot by excessive water or flooding during heavy rain season on summer. Therefore the aim of this study was carried out to measure the changes of soil water potential and to compare the growth responses of 'Jinok' (Vitis spp.) and 'Campbell Early' (V. labruscana) grapes under three drainage systems (control, conventional drainage, and under drainage). After heavy rain, soil water potential holding times above -15 kpa applied water excessive were 352, 348 and 180 hours in control, conventional, and under drainage systems, respectively. The clay content of the under drainage system was lower than the other systems about 8-12%. The crop water stress index was lowest in the under drainage and highest in the control. Also, photosynthetic rate has showed the opposite result with crop water stress index. It was significant differences between the treatments but, the value has not shown significantly different between the varieties. In addition, leaf area and the trunk growth rate was more effective in under drainage than in the control and conventional drainage.

Permeability-increasing effects of hydraulic flushing based on flow-solid coupling

  • Zhang, Jiao;Wang, Xiaodong
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.285-300
    • /
    • 2017
  • Shallow coal resources are increasingly depleted, the mining has entered the deep stage. Due to "High stress, high gas, strong adsorption and low permeability" of coal seam, the gas drainage has become more difficult and the probability of coal and gas outburst accident increases. Based on the flow solid coupling theory of coal seam gas, the coupling model about stress and gas seepage of coal seam was set up by solid module and Darcy module in Comsol Multiphysics. The gas extraction effects were researched after applying hydraulic technology to increase permeability. The results showed that the effective influence radius increases with the expanded borehole radius and drainage time, decreases with initial gas pressure. The relationship between the effective influence radius and various factors presents in the form: $y=a+{\frac{b}{\left(1+{(\frac{x}{x_0})^p}\right)}}$. The effective influence radius with multiple boreholes is obviously larger than that of the single hole. According to the actual coal seam and gas geological conditions, appropriate layout way was selected to achieve the best effect. The field application results are consistent with the simulation results. It is found that the horizontal stress plays a very important role in coal seam drainage effect. The stress distribution change around the drilling hole will lead to the changes in porosity of coal seam, further resulting in permeability evolution and finally gas pressure distribution varies.

Characterizations of Yields and Seed Components of Sesame (Sesamum indicum L.) as Affected by Soil Moisture from Paddy Field Cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun;Kim, Sung-Up;Oh, Eunyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.369-382
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to increase productivity of cereal crops in paddy fields which have poor percolation and drainage properties, it is necessary to fully understand crop response to excessive soil water condition and management of soil drainage system in paddy field. The objectives of this study were to investigate effects of excessive soil water to sesame growth and to quantify stress response using groundwater levels. Two cultivars of sesame were selected to investigate; Gunbak and Areum. These sesames were planted in paddy fields located in Miryang, Gyeongnam with different soil drainage levels and drainage systems. The experiment site was divided into two plots by drainage class; very poorly and somewhat poorly drained. Two different drainage systems were applied to alleviate excessive soil water in each plot: open ditch and pipe drainage system. Soil water contents and groundwater levels were measured every hour during growing season. Pipe drainage system was significantly effective to alleviate wet injury for sesame in paddy fields. Pipe drainage system decreased average soil moisture content and groundwater level during sesame cultivation. This resulted in greater yield and lignan contetns in sesame seeds than ones from open ditch system. Comparison between two cultivars, Gunbak had greater decrease in growth and yield by excessive soil water and high groundwater level than Areum. Seed components (lignan) showed decrease in seeds as soil water increased. When soil moisture content was greater than 40%, lignan content tended to decrease than ones from less soil moisture content. Based on these results, pipe drainage system would be more effective to reduce wet injury to sesame and increase lignan component in paddy field cultivation.