• Title/Summary/Keyword: Drainage basin

Search Result 324, Processing Time 0.026 seconds

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Evaluation on Actual Discharge Data for TMDL in Nakdong River Basin (낙동강수계 수질오염총량관리를 위한 유량조사 평가)

  • Kim, Gyeong-Hoon;Kim, Yong-Seok;Park, Bae-Kyung;Yoon, Jong-Su;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • To drive efficiently total water pollution load management, needs to calculate the exact load emissions, pollution load allocation and implementation evaluation in each unit area of watershed and accurate and regular flow of data. For these reasons, the Nakdong River TMDL Research Center has produced directly or indirectly in the average interval of eight days (30 times or more / year) 41 points for unit area of the total water pollution load management and 8-point of municipal requirement for a total of 49 branches as a flow data in 2004 from August. This acquired the survey flow is evidence of trends and changes each point in the Nakdong River based on time, such as 10 years based on average design flow available to the foundation of the summit as the major water policy is to be utilized. This study was performed on actual discharge measuring data and introduced performance results each drainage basin of Nakdong River from 2004 to 2008 over the total of past five years.

Improvement of the storage coefficient estimating mehod for the clark model (Clark 단위도의 저류상수산정방법의 개선)

  • 윤태훈;박진원
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1334-1339
    • /
    • 2002
  • The objective of this study is to help practicing engineers easily use the Clark model which is used for estimating the magnitude of design flood for small stream. A representative unit hydrograph was derived on the basis of the past rainfall-runoff data and unit hydrographs, and the storage coefficient of Clark model was estimated by using hydrograph recession analysis. Since the storage coefficient(K) is a dominating factor among the parameters of Clark method, a mulitple regression formula, which has the drainage area, main channel length and slope as parameters, is propsed to estimate K value of a basin where measured data are missing. The result of regression analysis showed that there is a correlation between a storage coefficient(K) and aforemetioned three parameters in homogenious basins. A regression formular for K was derived using these correlations in a basin of Han River, Nakdong River, Young River, Kum River and Sumjin River

  • PDF

Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope (하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석)

  • Yoon, Yeo Jin;Kim, Joo Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.

An Estimation of NPS Pollutant Loads using the Correlation between Storm Water Runoff and Pollutant Discharge in a Small Urban Drainage Basin (도시소유역에서의 유출과 비점원오염물 배출 간의 상관관계 수립에 의한 NPS 오염물 배출량의 산정)

  • 신현석;윤용남
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.85-95
    • /
    • 1993
  • Three purposes of this study are as follows: The first was the development of the extention method for the limited data observed in an urban drainage basin. The second was the analysis of the correlation between storm water runoff and NPS(non-point source) pollutant discharge, The last was the calculation of the monthly and annual specific NPS loads using the established correlation. the selected model was the SWMM monthly and annual specific NPs loads using the established correlation. The selected model was the SWMM (Storm Water Management model) developed by the US EPA(environmental Protection Agency). As a result of this study, the best correlation between storm wate runoff and NPS pollutants discharge was produced by the non-linear correlation between runoff rate(mm/hr)and specific loads rate(g/ha/sec)for all pollutants studied ; SS, COD, BOD, and TN. The best correlation through the analysis based on evently total mass was made by the linear correlation between the specific accumulated runoff(mm) and the specific accumulated loads(kg/ha) for CASE 1., and by the non-linear correlation for CASE 2. The NPS annual specific loads for the urban basin studied were 4933 kg/ha/year for SS, 775kg/ha/year for BOD, 3094kg/ha /year for COD,257kg/ha/year for TN, respectively. And the proportion of the NPS annual specific loads to the total annual specific loads were 42 % for SS, 13 % for BOD, 29% for COD, and 21 % for TN.

  • PDF

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

Estimation or Threshold Runoff on Han River Watershed (한강유역 한강유출량 산정)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.151-160
    • /
    • 2006
  • In this study, threshold runoff which is a hydrologic component of flash flood guidance(FFG) is estimated by using Manning's bankfull flow and Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH) methods on Han River watershed. Geographic Information System(GIS) and 3' Digital Elevation Model database have been used to prepare the basin parameters of a very fine drainage area($1.02\~56.41km^2$), stream length and stream slope for threshold runoff computation. Also, cross-sectional data of basin and stream channel are collected for a statistical analysis of regional regression relationships and then those are used to estimate the stream parameters. The estimated threshold runoff values are ranged from 2 mm/h to 14 mm/6hr on Han River headwater basin with the 1-hour duration values are$97\%$ up to 8mm and the 6-hour values are $98\%$ up to 14mm. The sensitivity analysis shows that threshold runoff is more variative to the stream channel cross-sectional factors such as a stream slope, top width and friction slope than the drainage area. In comparisons between the computed threshold runoffs on this study area and the three other regions in the United States, the computed results on Han River watershed are reasonable.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Flood Simulation for Basin-Shaped Urban Watershed Considering Surface Flow (분지형 도시유역에서의 노면류를 고려한 침수모의)

  • Ahn, Jeonghwan;Cho, Woncheol;Jung, Jaehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.841-847
    • /
    • 2014
  • Urban runoff models have been continuously developing with concerns for urban flood. Recently, models that be able to quantitatively analyze surface inundation caused by overflowed water from storm sewer were also developed by coupling 1-dimensional sewer model and 2-dimensional surface flow model. However, only overflowed water from storm sewer can be analyzed by the models have been developed until now. They are limited to be not able to analyze surface inundation caused by surface runoff that could not flow into the storm sewer. In order to overcome the limitation, basin-overlap method was devised adding a dummy 1-dimensional sewer layer to the model, so it can consider the efficiency of inflow to the storm sewer system. XP-SWMM 2011 is applied for urban runoff model and the flood event occurred on July 27, 2011 in basin-shaped Sadangcheon watershed is chosen for study inundation event. According to simulation results basin-overlap method reappear the observed inundation event more precisely than traditional method. This results suggest that drainage system has to be improved for reducing inundation caused by surface runoff and would be used as considerations for planning an urban basin design magnitude.

The assessment of the relative contribution of the shape of instantaneous unit hydrograph with heterogeneity of drainage path (배수경로 이질성에 의한 순간단위도 형상의 상대적 기여도 평가)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.897-909
    • /
    • 2009
  • The relative contribution of between hillslope-flow and stream-flow by heterogeneity of drainage path are quantitatively assessed in the present study with GIUH model based on grid of GIS. Application watersheds are selected Pyeongchang, Bocheong and Wi river basin of IHP in Korea. The mean and variance of hillslope and stream length are estimated and analyzed in each watershed. And coupling with observation storm events, estimate hillslope and stream characteristic velocity which dynamic parameters of GIUH model. The mean and variance of distribution of travel time (i.e. IUH) calculate using estimated pass lengths and characteristic velocities. And the relative contributions are assessed by heterogeneity of drainage path. As a result, the effect of the variance that determine shape of IUH dominate with hillslope's effect in the small watershed area (within 500 $km^2$). Thus, GIUH in the small watershed area must consider hillslope-flow.