• 제목/요약/키워드: Drainage Network

검색결과 153건 처리시간 0.03초

도시하수도망에 대한 유출모형의 남용과 유출해석 (Runoff Analysis and Application of Runoff Model of Urban Storm Drainage Network)

  • 박성천;이관수
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.33-42
    • /
    • 1996
  • This research is to show the application of runoff model and runoff analysis of urban storm drainage network. the runoff models that were used for this research were RRL, ILLUDAS, and SWMM applicative object basin were Geucknak-chun and Sangmu drainage basin located in Seo-Gu, Kwangju. The runoff analysis employed the design storm that distributed the rainfall intensity according to the return period after the huff's method. The result from the comparative analysis of the three runoff models was as follows The difference of peak runoff by return period was 20-30% at Sangmu drainage area of $3.17 Km^2$, while less than 10% at Geucknak-chun drainage area of $12.7 Km^2$. The peak runoff were similar to all models. At the runoff hydrograph the times between rising and descending points were in the sequence of RRL, ILLUDAS and SWMM, but the peak times were similar to all models. The conveyance coefficient to examine the conveyance of the existing drainage network was 0.94-1.37, which means insecure, in Geucknak-chun drainage basin and 0.69-1.16, which means secure, in sangmu drainage basin.

  • PDF

Fractal 나무의 개념을 기반으로 한 설마천 시험유역의 Fractal 차원 추정 (Estimation of fractal dimension for Seolma creek experimental basin on the basis of fractal tree concept)

  • 김주철;정관수
    • 한국수자원학회논문집
    • /
    • 제54권1호
    • /
    • pp.49-60
    • /
    • 2021
  • 본 연구에서는 Fractal 나무의 개념을 이용하여 자연유역의 두 가지 개별적 Fractal 차원을 추정하는 방법을 제시하고자 한다. 이를 위하여 Fractal 나무의 성장 과정을 기반으로 유역 내부에서 발생 가능한 모든 배수 경로를 추출하여 완전한 배수망을 구성하고 이에 해당하는 Fractal 특성을 분석해 보고자 한다. 유역 내부에서 Fractal 나무의 성장 과정은 하천 유동의 특성을 가지는 배수 경로에서만 제한적으로 나타날 수 있다. 소규모 유역의 경우 Fractal 나무의 성장 단계에 따라 망상 구조의 분기 특성이 단일 하천 구간의 사행 특성에 비하여 민감하게 변화하여 단일한 망상 구조 속에서도 다양한 분기 구조가 생성될 수 있다. 따라서 소규모 유역을 대상으로 한 망상 구조에 대한 Fractal 차원은 단일한 수치의 고정된 형태보다는 범위의 형태로 취급되어야 하는 것이 타당한 것으로 판단된다. 또한, 소규모 유역의 배수 구조에 대한 분석에는 지형도나 수치지도로부터 추출한 하천망보다 본 연구에서 제시한 Fractal 나무의 성장에 따른 망상 구조와 같은 정보가 더 유용할 수 있을 것으로 판단된다.

DEM을 이용한 수로망 산정 기법에 따른 유역의 배수구조 평가 (Evaluation of DEM-based Channel Network Delineation Methods on Watershed Drainage System)

  • 이기하;윤의혁;김주철;정관수
    • 대한토목학회논문집
    • /
    • 제31권1B호
    • /
    • pp.1-11
    • /
    • 2011
  • DEM을 이용한 수로망의 생성은 수문해석모형의 적용을 위한 전처리 과정으로써 실제 유역시스템의 배수구조를 결정하는 중요한 인자로 활용된다. 본 연구에서는 DEM으로부터 합리적인 수로망 추출과정 수립을 목적으로 보편적으로 사용되고 있는 면적한계기준과 국부경사와 기여면적사이의 특성에 근거한 경사-면적한계기준 기법을 이용하여 수로망을 생성하고 지형법칙에 의거하여 각 기법에 따른 소규모 유역(진안천 유역; $18.28km^2$) 배수구조의 신뢰성을 평가하였다. 그 결과, 면적한계 기준 기법은 수원유역의 크기의 인위적 결정에 의해 지형법칙을 만족시키지 못하고 유역전체의 배수구조를 왜곡되게 묘사한 반면, 경사-면적한계기준 기법의 경우 물리적인 지형법칙을 만족시키는 우수한 결과를 나타냈다. 따라서 경사-면적한계기준 기법은 DEM 기반의 수문모형을 적용 시 효율적이고 객관적인 수로망 생성을 위한 방법론으로서 활용이 가능하리라 판단된다.

도시 유역의 우수관망 통수능 개선을 위한 LID 기술 적용 연구 (A Study on Application of LID Technology for Improvement of Drainage Capacity of Sewer Network in Urban Watershed)

  • 백종석;김백중;이상진;김형산
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.617-625
    • /
    • 2017
  • Both domestic and overseas urban drainage systems have been actively researched to solve the problems of urban flash floods and the flood damage that is caused by local downpours. Recent urban planning has been designed to better manage the floods of decentralized rainfall-management systems, and the installation of green infrastructure and low-impact development (LID) facilities at national ministries has been recommended. In this study, we use the EPA SWMM model to construct a decentralized rainfall-management network for each small watershed, and we analyze the effect of the drainage-capacity improvement from the installation of the LID technologies in vulnerable areas that replaces the network-expansion process. In the design of the existing urban piping systems, it is common to increase the pipe size due to the increment of the impervious area, the steep terrain, and the sensitive entrance-ramp junction; however, the installation of green infrastructure and LID facilities will be sufficient for the construction of a safe urban drainage system. The applications of LID facilities and green infrastructure in urban areas can positively affect the recovery of the corresponding water cycles to a healthy standard, and it is expected that further research will occur in the future.

배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석 (Analysis of Drainage Structure Based on the Geometric Characteristics of Drainage Density and Source-Basin)

  • 김주철;김재한
    • 한국수자원학회논문집
    • /
    • 제40권5호
    • /
    • pp.373-382
    • /
    • 2007
  • 수로가 시작되는 지점의 정확한 위치를 찾는 것은 구릉지 사면상의 물의 동적거동으로 인하여 매우 어렵다. 이러한 목적을 위하여, 김주철과 김재한(2007)은 DEM을 이용한 경사와 면적 사이의 규모에 따른 거동특성에 따라 실제 유역내 수로망을 제시한 바 있다. 본 연구는 이들의 연구 성과의 연장으로서, 배수밀도와 수원유역의 기하학적 특성을 기반으로 하여 DEM으로부터 동정된 가설수로망의 신뢰성을 평가하여 보았다. 그 결과 경사-면적한계기준에 의한 가설수로망이 자연유역의 배수구조를 매우 잘 묘사하고 있음을 확인할 수 있었다. 또한 지형학적 동질성을 가진 지역내 수원유역의 형상들 사이에는 훌륭한 기하학적 상사성이 존재함을 추론할 수 있었다. 면적한계기준은 수원유역의 형상을 구속하여 왜곡된 배수구조를 야기할 수도 있었다. 그럼에도 불구하고 DEM으로부터 동정된 가설수로망들이 공간 채움 구조를 잘 표현하고 있는 점이 특히 주목된다.

논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템 (Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts)

  • 강민구
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

하계망으로 본 영산강 유역 옹관묘의 입지특성 (Location Characteristics of the Jar Coffins in the Yeongsan River Basin on the Drainage Network)

  • 이애진;박지훈;이찬희
    • 한국지형학회지
    • /
    • 제23권3호
    • /
    • pp.57-66
    • /
    • 2016
  • The objective of this study is to find out geomorphological characteristics of historical ruins where people produced and consumed large jar coffins excavated in the Yeongsan river basin using the map of old drainage network to restore distribution network. For this purpose, we chose the 21 consumption sites. The results are as follows. First of all, large jar coffins(relics, 47.6% of total) in the Yeongsan River basin were located in Sampo stream basin, almost all of them were located within the Yeongsan River main stream basin and Sampo stream basin. Also, distance from all consumption site to river was within about 2km. Therefore, it is thought that the all consumption sites are located at the place of the gift of nature that was very favorable to water transport of jar coffins. The results of this study may be used as basic data for research of cultural relics in the Yeongsan river basin.

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF

Climate change effect on storm drainage networks by storm water management model

  • Hassan, Waqed Hammed;Nile, Basim Khalil;Al-Masody, Batul Abdullah
    • Environmental Engineering Research
    • /
    • 제22권4호
    • /
    • pp.393-400
    • /
    • 2017
  • One of the big problems facing municipalities is the management and control of urban flooding where urban drainage systems are under growing pressure due to increases in urbanization, population and changes in the climate. Urban flooding causes environmental and infrastructure damage, especially to roads, this damage increasing maintenance costs. The aim of the present study is to develop a decision support tool to identify the performance of storm networks to address future risks associated with climate change in the Middle East region and specifically, illegal sewer connections in the storm networks of Karbala city, Iraq. The storm water management model has been used to simulate Karbala's storm drainage network using continuous hourly rainfall intensity data from 2008 to 2016. The results indicate that the system is sufficient as designed before consideration of extra sewage due to an illegal sewer connection. Due to climate changes in recent years, rainfall intensity has increased reaching 33.54 mm/h, this change led to flooding in 47% of manholes. Illegal sewage will increase flooding in the storm system at this rainfall intensity from between 39% to 52%.