• 제목/요약/키워드: Drain spacing

검색결과 37건 처리시간 0.021초

배수효율이 높은 지하암거의 간격과 주름유공관의 통수능 비교분석 (A Comparative Study on the Spacing and Discharge Performance of Subsurface Drainage Culvert to Increase Drainage Efficiency)

  • 김현태;유전용;정기열;박영준
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.67-72
    • /
    • 2019
  • This study compared the theory of a culvert spacing and analytical results of the seepage flow for the subsurface drainage. i) If culvert spacing (Sc) is within 5 m, the unit drainage (q) is very larger; in contrast, if Sc is 5 m or more, there is very little drainage in the middle between drains. Therefore, the drain spacing should be within 5 m to ensure high drainage efficiency. ii) Since the planned culvert drainage increases linearly with the soil's permeability coefficient (k), k must be taken into account when determining the drain diameter by the planned culvert drainage. iii) As a result of analyzing the drainage performance of the absorbing culvert, the drainage performance is sufficient with the diameter of the corrugated drain pipe Dc = 50 mm at the length of the drain Lc = 100 m. iv) Therefore, if the drain spacing (Sc) is less than 5 m using the low-cost non-excavated drainage pipe method (${\Phi}50mm$ the corrugated drain pipe and fiber mat) rather than the conventional trench drain method (Sc > 10 m, Dc > 100 mm), uniform and high drainage efficiency can be ensured as well as low construction cost. v) The sub-irrigation+drainage culvert requires narrower drain spacing (Sc < 2-3 m) for irrigation. As a result of examining the condition of 35 mm in diameter (Dc) and 2~3 m in drain spacing, it is possible to apply the non-excavated drainage pipe method to the sub-irrigation+drainage culvert because drainage performance is sufficient at the drain length Lc = 50 m.

스미어 발생지반에서 배수재 간격비에 따른 압밀거동 분석 (Analysis on the Consolidation Behavior of the Smeared Soil Considering Vertical Drain Spacing)

  • 강희웅;윤찬영;정영훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.141-146
    • /
    • 2010
  • To investigate the effect of drainage spacing and smear on the rate of consolidation, a large consolidation chamber and mandrel insertion device were developed. After the occurrence of smear by installation of sand drain, model ground was consolidated in either overconsolidated or normally consolidated state. As smear effect increases and thus drain spacing decreases, total settlement increase in overconsolidated state but has no effect in normally consolidated state. Efficiency of vertical drain decreases and consequently consolidation time increases in all tests as smear effect becomes significant.

  • PDF

모래기둥의 설치 간격에 관한 연구 (A Study on the Spacing between the Sand Drain Wells)

  • 김홍택
    • 한국지반공학회지:지반
    • /
    • 제8권1호
    • /
    • pp.67-80
    • /
    • 1992
  • 본 연구에서는 시간에 따른 공사하중의 크기 변화가 다양할 경우에, smear zone및 well resistance의 영향을 모두 고려하여 설계시에 요구되는 모래기등 영향원의 반지름(즉, 모래기둥의 설치간격)을 결정하기 위한 해석법을 제시하였다. 이를 위해 단순선형점증하중의 경우에 대해 제시된 Olson의 해석법(smear zone 및 well resistance의 영향을 모두 무시한 경우)을 변형하였으며, 아울러 제시된 해석법을 토대로 설계에 관련된 여러가지 변수가 모래기end의 설치간격에 미치는 영향을 조건별로 분석하였다.

  • PDF

연직드레인 공법에 의한 연약지반의 압밀거동 (Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains)

  • 이달원;강예묵
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.376-381
    • /
    • 1998
  • The large scaled field test by prefabricated vertical drains was performed to evaluate the superiority of vertical discharge capacity for drain materials through compare and analyze the time-settlement behavior with drain spacing and the compression index and consolidation coefficient obtained by laboratory experiments and field monitoring system 1. The relation of measurement settlement( $S_{m}$) versus design settlement( $S_{t}$) and measurement consolidation ratio( $U_{m}$) versus design consolidation ratio( $U_{t}$) were shown $S_{m}$=(1.0~l.1) $S_{t}$, $U_{m}$=(1.13~l.17) $U_{t}$, at 1.0m drain spacing and $S_{m}$=(0.7~0.8) $S_{t}$, $U_{m}$=(0.92~0.99) $U_{t}$ at 1.5m drain spacing, respectively. 2. The relation of field compression index( $C_{cfield}$) and virgin compression index( $V_{cclab}$) was shown $C_{cfield}$=(1.0~1.2) $V_{cclab}$, But it was nearly same value when considered the error with determination method of virgin compression index and prediction method of total settlement. 3. field consolidation coefficient was larger than laboratory consolidation coefficient, and the consolidation coefficient ratio( $C_{h}$/ $C_{v}$) were $C_{h}$=(2.4 ~ 3.0) $C_{v}$. $C_{h}$=(3.5 ~ 4.3) $C_{v}$ at 1.0m and 1.5m drain spacing and increased with increasing of drain spacingngasing of drain spacingng spacingng

  • PDF

다양한 배수재 간격비에 따른 스미어 발생 지반의 압밀거동에 대한 실험적 연구 (Experimental Study on Consolidation Behavior of the Smeared Soil for Various Spacing Ratios of Vertical Drains)

  • 윤찬영;강희웅;정영훈
    • 한국지반공학회논문집
    • /
    • 제27권4호
    • /
    • pp.77-87
    • /
    • 2011
  • 이 연구에서는 실내에서 스미어가 발생한 지반을 모사하고 배수재 간격에 따른 스미어의 영향이 차후의 압밀거동에 미치는 영향을 분석하기 위하여 대형압밀챔버와 모형 맨드렐 관입 장비를 이용하여 다양한 압밀시험을 실시하였고 연직배수공법의 효율을 분석하였다. 실험결과 과압밀 영역에서는 스미어의 영향범위가 증가함에 따라 침하량도 증가하였으나, 정규압밀영역에서 스미어에 의한 침하량의 차이는 나타나지 않았다. 일반적으로 연직배수재를 설치한 경우 압밀속도를 향상시킬 수 있지만, 배수재 간격비가 감소하고 배수거리가 짧아지더라도 짧아진 배수거리만큼 압밀속도가 빨라지지는 않으며 오히려 압밀효율은 감소한다.

페이퍼드레인 공법에 의한 연약지반의 압밀거동 (Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains)

  • 이달원;강예묵;김성완;지인택
    • 농업과학연구
    • /
    • 제24권2호
    • /
    • pp.145-155
    • /
    • 1997
  • 본 연구는 현재 시공중인 사업부지를 선정하여 시험시공중에 있는 연약지반에서 페이퍼 드레인 공법에 의하여 처리한 지반에서 드레인의 타입간격별 침하거동을 파악하고, 실내시험과 현장계측치로부터 구한 압축지수와 압밀계수를 비교분석하여 배수성능의 우수성을 평가한 것으로 그결과를 요약하면 다음과 같다. 1. 실측침하량($S_m$)과 설계침하량($S_t$)의 관계 및 실측압밀도($U_m$)와 설계압밀도($U_t$)와의 관계는 드레인 타입간격 1.0m에서는 $S_m=(1.0{\sim}1.1)S_t$, $U_m=(1.13{\sim}1.17)U_t$로 나타났고, 드레인 타입간격 1.5m에서는 $S_m=(0.7{\sim}0.8)S_t$, $U_m=0.92{\sim}0.99)U_t$의 범위로 나타났다. 2. 현장압축지수($Cc_{Field}$)와 처녀압축지수($V_{CC_{lab.}}$)와의 관계는 $Cc_{Field}=(1.0{\sim}1.2)V_{CC_{lab.}}$로 나타났으나, 처녀압축지수의 결정밥법과 최종예상 침하량의 적용방법에 따른 오차를 감안하면 거의 동일한 것으로 판단된다. 3. 계측치로부터 역산한 현장압밀계수는 실내시험에서 구한 압밀계수보다 크게 나타났고, 압밀계수비($C_h/C_v$)는 드레인 타입간격 1.0m에서는 $C_h=(2.4{\sim}3.0)C_v$, 드레인 타입간격 1.5m에서는 $C_h=(3.5{\sim}4.3)C_v$의 범위로 타입간격이 넓을수록 크게 나타났다. 4 드레인 타입간격에 따른 드레인 자재별 배수성능 평가기준을 압밀계수비의 결과를 기초로 판단하여 보면, 드레인 타입간격 1.0m에서는 Mebra 드레인, 드레인 타입간격 1.5m에서는 Amer드레인이 약간 우수한 것으로 나타났으나, 동일한 타입간격에서는 재질간의 큰차이가 발생되지 않아 모두 동일한 배수성능을 갖는 것으로 판단된다.

  • PDF

Effect of Subsurface Drainage Systems on Soil Salinity at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Su;Lee, Soo-Hwan;Oh, Yang-Yeol;Ryu, Jin-Hee;Ko, Jong-Cheol;Hong, Ha-Chul;Kim, Yong-Doo;Kim, Sun-Lim
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.618-627
    • /
    • 2015
  • Soil salinity is the most critical factor for crop production at reclaimed tidal saline soil. Subsurface drainage system is recognized as a powerful tool for the process of desalinization in saline soil. The objective of this study was to investigate the effects of subsurface drainage systems on soil salinity and corn development at Saemangeum reclaimed tidal saline soil. The field experiments were carried out between 2012 and 2014 at Saemangeum reclaimed tidal land, Buan, Korea. Subsurface drainage was installed with four treatments: 1) drain spacing of 5 m, 2) drain spacing 10 m, 3) double layer with drain spacing 5 m and 10 m, and 4) the control without any treatment. The levels of water table showed shorter periods above 60 cm levels with the deeper installation of subsurface drainage system. Water soluble cations were significantly greater than exchangeable forms and soluble Na contents, especially in surface layer, were greatly reduced with the installation of subsurface drainage system. Subsurface drainage system improved biomass yield of corn and withering rate. Thus, the biomass yield of corn was improved and the shoot growth was more affected by salinity than was the root growth. The efficiency of double layer was not significant compared with the drain spacing of 5 m. The economic return to growers at reclaimed tidal saline soil was the greatest by the subsurface drainage system with 5 m drain spacing. Our results demonstrated that the installation of subsurface drainage system with drain space of 5 m spacing would be a best management practice to control soil salinity and corn development at Saemangeum reclaimed tidal saline soil.

연직드레인 공법에 의한 연약지반의 압밀거동 (Consolidation Behavior of Soft Ground by prefabricated Vertical Drains)

  • 이달원
    • 한국농공학회지
    • /
    • 제42권5호
    • /
    • pp.133-143
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains was performed to anayze the effect of parameters of the very soft clay at a test site. compression index and the coefficient of horizontal consolidation obtained by back-analysis of settlement data were compared with those obtained by means of laboratory tests. Hyperbolic method, Asaoka meoth and curve fitting method were used to compute final settlement of coefficient of consolidation. The relationships of settlement measurement(Sm) versus design settlement(St) and the measurement consolidation ratio(Um) versus design consolidation (Ut) were shown as Sm=(1.0~1.1) St , Um=(1.13~1.17) Ut at 1.0m spacing of drain and Sm=(0.7~0.8)St, Um= (0.92~0.99) Ut at 1.5 m spacing of drain, respectively . The relationships of the field compression index(CcField) and virgin compression index(vcc lab) were shown as Ccfield =(1.0~1.2)vcc lab . But it was nearly within the same range when considering the error factor with the determination method of virgin compression index and the prediction back-analysis of the settlement data was larger than the coefficient of vertical consolidation, and the ratio of consolidation coefficient (Ch/Cv) was Ch =(2.4~2.9) Cv , Ch=(3.4~4.2) Cv at 1.0m and 1.5m spacing of drain, respectively.

  • PDF

PHEMT 소자 최적화에 대한 연구 (Studies on Optimization of PHEMTs)

  • 한효종;이문교;설우석;이복형;이한신;임병옥;김삼동;이진구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.747-750
    • /
    • 2003
  • We have studied PHEMTs optimization by means of fabrication of PHEMTs. All PHEMTs have been fixed with a gate length of 0.1 ${\mu}{\textrm}{m}$, a gate head size of 0.75${\mu}{\textrm}{m}$, and two gate fingers. We have measured the characteristics of PHEMTs with variation of source-drain spacing, pad size, and gate width. As a result, we have found the enhanced characteristics of $I_{dss}$, $S_{21}$, $h_{21}$, $f_{T}$, $f_{max}$, and $G_{ms}$ with increasing gate width. Also, $g_{m}$ has improved with decreasing source-drain spacing, and $S_{21}$ has improved with deceasing pad size.e.e.e.e.

  • PDF