• Title/Summary/Keyword: Drag-force

Search Result 600, Processing Time 0.027 seconds

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

Hydrodynamic coupling distance between a falling sphere and downstream wall

  • Lin, Cheng-Chuan;Huang, Hung-Tien;Yang, Fu-Ling
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In solid-liquid two phase flow, the knowledge of how descending solid particles affected by the presence of downstream wall is important. This work studies at what interstitial distance the velocity of a vertically descending sphere is affected by a downstream wall as a consequence of wall-modified hydrodynamic forces through a validated dynamic model. This interstitial distance-the hydrodynamic coupling distance ${\delta}_c-is$ found to decay monotonically with the approach Stokes number St which compares the particle inertia to viscous drag characterized by the quasi-steady Stokes' drag. The scaling relation ${\delta}_c-St-1$ decays monotonically as literature below the value of St equal to 10. However, the faster diminishing rate is found above the threshold value from St=10-40. Furthermore, an empirical relation of ${\delta}_c-St$ shows dependence on the drop height which clearly indicates the non-negligible effect of unsteady hydrodynamic force components, namely the added mass force and the history force. Finally, we attempt a fitting relation which embedded the particle acceleration effect in the dependence of fitting constants on the diameter-scaled drop height.

Microparticle Separator based on Dean Vortex in Spiral Microchannel (나선형 미세채널 내부에 형성되는 딘와류 이용한 미세입자 분리소자)

  • Byun, Kang Il;Kim, Hyung Jin;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.555-560
    • /
    • 2014
  • This paper presents a microparticle separator using a spiral microchannel. A particle separator based on the dean vortex was designed, fabricated, and characterized. Two different spiral microchannels were fabricated. Width and initial radius of rotation in the spiral microchannel were fixed to $300{\mu}m$ and 1.75 mm, respectively. Two different depths of the microchannels were designed at $50{\mu}m$ and $80{\mu}m$. In this experimental study, the equilibrium position of microparticles was monitored by using fluorescent microbeads. In the case of a low dean number (<1.0), lift force and dean drag force were similar, indicating that microbeads were distributed to almost all areas across microchannels. However, in the case of a high dean number (>1.0), dean drag force rather than lift force was dominant, indicating that microbeads moved toward the inner wall of the spiral microchannel.

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Xu, Yanxia;Tang, Bo;Song, Xingfu;Sun, Ze;Yu, Jianguo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2355-2364
    • /
    • 2018
  • We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in $TiO_2$ production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Distribution of Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 풍력계수 분포에 관한 연구)

  • 이석건;이현우
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.28-36
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30$^{\circ}$ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30$^{\circ}$. 5. The wind forces at the wind direction of 30$^{\circ}$ instead of 0$^{\circ}$ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.

  • PDF

Experimental Analysis on Aerodynamic Drag of HEMU-400X as Variations of Pantograph Cover Configurations (팬터그래프 커버형상에 따른 HEMU-400X 항력의 실험적 분석)

  • Lee, Yeong-Bin;Kwak, Min-Ho;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.88-93
    • /
    • 2011
  • The aerodynamic drag characteristics of HEMU-400X which has been being developed for the maximum speed of 430km/h were analyzed experimentally as the variations of the pantograph cover configurations to reduce the acoustic noise and the aerodynamic drag of the pantograph system. The wind tunnel tests were performed with three pantograph cover models upon 1/20 scaled 5-car model of HEMU-400X. Two kinds of wedge shapes which induce up-flow in the vicinity of the pantograph and one cone shape which reduces the whole train drag were used in order to compare the aerodynamic characteristics as the pantograph cover shape changes. The each axial force of 5 each car was measured at a time with the test velocities, 30, 40, 50, 60m/s. Through the wind tunnel test the base drag forces of HEMU-400x model and the forces by the pantograph cover on the train model were investigated and the aerodynamic drag characteristics of the train model by the pantograph cover configurations were analyzed.

  • PDF

Structural Integrity Evaluation of CANFLEX Fuel Bundle by Hydraulic Drag Load

  • H. Y. Kang;K. S. Sim;Lee, J. H.;Kim, T. H.;J. S. Jun;C. H. Chung;Park, J. H.;H. C. Suk
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.373-378
    • /
    • 1996
  • The CANFLEX fuel bundle has been developed by KAERI/AECL jointly to facilitate the use of various fuel cycles in CANDU-6 reactor. The structural analysis of the fuel bundles by hydraulic drag force is performed to evaluate the fuel integrity during the refuelling service. The present analysis method is newly developed for the structural integrity valuation by studying FEM modelling for the fuel bundles in a fuel channel. As compared the results of the mechanical strength test the displacement value of endplate given by analysis results shoo6 to be good agreement within 15% under the maximum design drag load. As the results of analysis, it is shown to keep the structural integrity of CANFLEX fuel bundles under hydraulic drag load during the refuelling service.

  • PDF

Hydrodynamic Interference between Two Circular Cylinders in Tandem and Side by Side Arrangements (직렬 및 병렬배열에서 2원주의 유체역학적 간섭)

  • 노기덕;박지태;강호근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • The hydrodynamic interference between two circular cylinders in tandem and side by side arrangements was investigated by measuring of lift and drag on each cylinder. The time variations of interference lift and drag coefficients in each arrangement were observed at center-to-center pitch ratios of P/D=1.25 and 2.5 and Reynolds number of $Re=1.5\times10^4$. Average interference lift and drag coefficients were also observed at pitch ratios from P/D=1.25 to 2.5 and Reynolds number from $Re=1.5\times10^4$ to $1.5\times10^4$. The hydrodynamic interference between two circular cylinders differed with the shape of the arrangement and the pitch ratio, but the characteristics were revealed by measuring of lift and drag on each cylinder.

An Experimental Study on Drag Reduction of Grooved Cylinders (Riblet 홈을 가진 원주의 저항감소에 관한 연구)

  • Lim, Hee-Chang;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.508-513
    • /
    • 2000
  • An experimental investigation has been carried out for two circular cylinders having different groove configurations(U and V-shape). The results were compared with those for the smooth circular cylinder. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number $Re=8000{\sim}14,000$ based on the cylinder diameter. As a results, the U-groove circular cylinder was found to be most effective riblet shape with reducing the drag up to 21%. As the Reynolds number increases, the vortex shedding frequency of the grooved cylinders becomes a little larger, compared to the smooth cylinder. The flow visualization using the smoke-wire technique was also carried out to see the flow structure qualitatively.

  • PDF