• Title/Summary/Keyword: Drag coefficient ratio

Search Result 126, Processing Time 0.023 seconds

Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine (500kW급 수평축 조류발전기의 수력 최적 설계)

  • Ryu, Ki-Wahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

Papers : An Experimental Study of the Aerodynamic Characteristics Using the Wing - tip Jet Blowing at the Aircraft (논문 : 날개끝 불어내기 장치가 있는 항공기의 공력특성에 관한 실험연구)

  • Hong, Hyeon-Ui;Jeong, Un-Gap;Kim, Beom-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • The pressure distributions on a semi-span wing 1/12 scale mode and sic component aerodynamic forces and moments on a complete 1/16 scale advanced trainer model were measured. To reduce wing-tip vortex strength, 3 wing-tip jet slot shaped(forward $35{^{\circ}C}$ direction, straigt direction, backward $35{^{\circ}C}$ direction) and 3 blowing coefficents (0.004, 0.009, 0.017) were considered. From experiment results, the case of straight direction and blowing coefficent of 0.017 was the best effective in the reduction of drag and in increase of lift-drag ratio and A rate of drag decrease and a rate of lift-drag ratio increase were of most effective on angle of attack 8 degree.

A Study on Design of Wind Turbine Blade and Aerodynamic Analysis (수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

Numerical Study on the Aerodynamic Characteristics of Wings on the Formation Flight (편대비행 중인 날개들의 공력특성에 대한 수치적 연구)

  • Lee, Seung-Jae;Cho, Jeong-Hyun;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.18-26
    • /
    • 2007
  • The steady-state aerodynamic characteristics of wings on the formation flight were analyzed using the Vortex Lattice Method. When two wings were at formation flight, the sectional lift coefficient of a rear wing was increased due to a front wing. The result showed that the lift drag ratio increased as the rear wing were placed downward and decreased as the lateral spacing between wings increased. The difference of lift drag ratio between forward wing and rear wing increase as the aspect ratio of wings increased. When a rear wings and a forward wings placed at the same height, wings on the formation flight had the maximum lift drag ratio. The results showed that the benefit of the formation flight increased as the number of wings on the formation flight increased.

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.

Determination of Urban Surface Aerodynamic Characteristics Using Marquardt Method

  • Zhang, Ning;Jiang, Weimei;Gao, Zhiqiu;Hu, Fei;Peng, Zhen
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.281-283
    • /
    • 2009
  • Marquardt method is used to estimate the aerodynamic parameters in urban area of Beijing City, China, including displacement length (d), roughness length ($z_0$) and friction velocity (u*) and drag coefficient. The surface drag coefficient defined as the ratio between friction velocity and mean wind speed is 0.125 in our research, which is close to typical urban area value. The averaged d and $z_0$ are 1.2 m and 7.6 m. d and $z_0$ change with direction because of the surface heterogeneity over urban surface and reach their maximum values at S-SW sector, this tendency agrees with the surface rough element distribution around the observation tower.

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Estimation of Wind Pressure on Soundproof Tunnel and Noise Reduction at Far-field (방음터널의 풍하중 산정 및 감음성능 예측)

  • 임정빈;김영찬;김두훈;조재영;이학은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.542-547
    • /
    • 2004
  • The objective of this study is 0 estimate wind pressure acting on soundproof tunnel and noise reduction through the tunnel. For the purpose various shape of scale models were prepared and drag forces acting on each models were measured in wind tunnel. And numerical simulation was performed to confirm experimental results. As a result the lowest drag force coefficient of 0.59 was obtained in the case of arch roof shape model. Noise reduction through soundproof tunnel was simulated by using ray tracing method according to various open ratio of its roof area.

  • PDF

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구)

  • Kang, Seung Mo;Abdelmotalib, Hamada;Ko, Dong Guk;Park, Woe-Chul;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.861-869
    • /
    • 2015
  • In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.

A Study on Real-Coded Adaptive Range Multi-Objective Genetic Algorithm for Airfoil Shape Design (익형 형상 설계를 위한 실수기반 적응영역 다목적 유전자 알고리즘 연구)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.509-515
    • /
    • 2013
  • In this study, the real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was developed for an airfoil shape design. In order to achieve the better aerodynamic characteristics than reference airfoil at landing and cruise conditions, maximum lift coefficient and lift-to-drag ratio were chosen as object functions. Futhermore, the PARSEC method reflecting geometrical properties of airfoil was adopted to generate airfoil shapes. Finally, two airfoils, which show better aerodynamic characteristics than a reference airfoil, were chosen. As a result, maximum lift coefficient and lift-to-drag ratio were increased of 4.89% and 5.38% for first candidate airfoil and 7.13% and 4.33% for second candidate airfoil.