• Title/Summary/Keyword: Drag coefficient ratio

Search Result 126, Processing Time 0.019 seconds

Review of stability calculation of an artificial reef in the breaking wave zone of coastal waters (천해 쇄파역에서 인공어초 안정성 계산에 대한 고찰)

  • Kim, Chang-Gil;Oh, Tae-Gun;Suh, Sung-Ho;Kim, Dae-Kweon;Kim, Byung-Gyun;Choi, Yong-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.965-974
    • /
    • 2009
  • The current study reviews the formula used to calculate the stability of an artificial reef in the breaking wave zone of coastal waters. A comparison was carried out between the existing formula and a new formula that takes into account the water particle velocity in the breaking wave zone. Water particle velocity was analyzed using the Fluent (CADMAS-SURF) software program. The new formula took into various factors, including the difference in the drag coefficient due to the direction of the current and the ratio of distance between two reefs. The drag coefficient of the artificial reef due to the direction of the current was 0.84 when the distance ratio was 0.5. When the artificial reef was placed at 45 degree angle to the current, the product of the drag coefficient and the project area were 40 to 46 % greater than when the reef was placed at 90 degree angle. Our results regarding the stability of an artificial reef indicate that the new formula provides the designers of artificial reefs with a more rational and economic design rationale rather than the existing formula.

Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow (균질 2상 유동에 놓인 관군에 작용하는 감쇠비에 대한 실험적 연구)

  • Sim, Woo Gun;Dagdan, Banzragch
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.171-181
    • /
    • 2017
  • Two-phase cross flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. The drag force acting on a tube bundle subjected to air/water flow is evaluated experimentally. The cylinders subjected to two-phase flow are arranged in a normal square array. The ratio of pitch to diameter is 1.35, and the diameter of the cylinder is 18 mm. The drag force along the flow direction on the tube bundles is measured to calculate the drag coefficient and the two-phase damping ratio. The two-phase damping ratios, given by the analytical model for a homogeneous two-phase flow, are compared with experimental results. The correlation factor between the frictional pressure drop and the hydraulic drag coefficient is determined from the experimental results. The factor is used to calculate the drag force analytically. It is found that with an increase in the mass flux, the drag force, and the drag coefficients are close to the results given by the homogeneous model. The result shows that the damping ratio can be calculated using the homogeneous model for bubbly flow of sufficiently large mass flux.

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

Wind loading of a finite prism: aspect ratio, incidence and boundary layer thickness effects

  • Heng, Herman;Sumner, David
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.255-267
    • /
    • 2020
  • A systematic set of low-speed wind tunnel experiments was performed at Re = 6.5×104 and 1.1×105 to study the mean wind loading experienced by surface-mounted finite-height square prisms for different aspect ratios, incidence angles, and boundary layer thicknesses. The aspect ratio of the prism was varied from AR = 1 to 11 in small increments and the incidence angle was changed from α = 0° to 45° in increments of 1°. Two different boundary layer thicknesses were used: a thin boundary layer with δ/D = 0.8 and a thick boundary layer with δ/D = 2.0-2.2. The mean drag and lift coefficients were strong functions of AR, α, and δ/D, while the Strouhal number was mostly influenced by α. The critical incidence angle, at which the prism experiences minimum drag, maximum lift, and highest vortex shedding frequency, increased with AR, converged to a value of αc = 18° ± 2° once AR was sufficiently high, and was relatively insensitive to changes in δ/D. A local maximum value of mean drag coefficient was identified for higher-AR prisms at low α. The overall behaviour of the force coefficients and Strouhal number with AR suggests the possibility of three flow regimes.

A Study on Vehicle Drag Coefficients in Domestic Road Tunnels (국내 도로터널내 차량항력계수 관련 연구)

  • Lee, Chang-Woo;Lee, Kyeong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2005
  • Drag coefficient is one of the critical design factors to quantify the piston effect in vehicle tunnels. Several problems are raised on the drag coefficient currently applied for the ventilation system design; unverified adoption of the projected frontal area of the vehicle from the foreign study in the past, and lack of consideration for the slip-streaming effect. This study aims at better estimation of the traffic-induced ventilation force in the local tunnels. Values for the projected frontal area of the vehicles running on the local roads at present are proposed and results of an extensive CFD study are studied on the slip-streaming effects in various traffic conditions to quantify $K_{blockage}$ and the drag coefficient in the domestic tunnels.

  • PDF

The Effect of Aspect Ratio on Aerodynamic Characteristics of Flapping Motion (날개의 종횡비가 날개 짓 운동의 공기역학적 특성에 미치는 영향)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Kim, Kwang-Ho;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.217-220
    • /
    • 2006
  • The lift and drag forces produced by a wing of a given cross-sectional profile are dependent on the wing planform and the angle of attack. Aspect ratio is the ratio of the wing span to the average chord. For conventional fixed wing aircrafts, high aspect ratio wings produce a higher lift to drag ratio than low ones for flight at subsonic speeds. Therefore, high aspect ratio wings are used on aircraft intended for long endurance. However, birds and insects flap their wings to fly in the air and they can change their wing motions. Their wing motions are made up of translation and rotation. Therefore, we tested flapping motions with parameters which affect rotational motion such as the angle of attack and the wing beat frequency. The half elliptic shaped wings were designed with the variation of aspect ratio from 4 to 11. The flapping device was operated in the water to reduce the wing beat frequency according to Reynolds similarity. In this study, the aerodynamic forces, the time-averaged force coefficients and the lift to drag ratio were measured at Reynolds number 15,000 to explore the aerodynamic characteristics with the variation of aspect ratio. The maximum lift coefficient was turned up at AR=8. The mean drag coefficients were almost same values at angle of attack from $10^{\circ}$ to $40^{\circ}$ regardless of aspect ratio, and the mean drag coefficients above angle of attack $50^{\circ}$ were decreased according to the increase of aspect ratio. For flapping motion the maximum mean lift to drag ratio appeared at AR=8.

  • PDF

Effect of Divergent Trailing Edge Modification of Supercritical Airfoil in Transonic Flow (천음속유동에서 초임계익형 후연확대수정의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.183-189
    • /
    • 1997
  • The computation of the flow around a supercritical airfoil with a divergent trailing edge(DTE) modification(DLBA 243) is compared to that of original supercritical airfoil(DLBA 186). For this computation, Reynolds-Averaged Navier-Stokes equations are solved with a linearized block implicit ADI method and a mixing length turbulence model. Results show the effects of the shock and separated flow regions on drag reduction due to DTE modification. Results also show that DTE modification accelerates the boundary layer flow near the trailing edges which has an effect similar to a chordwise extension that increases circulation and is consistent with the calculated increase in the recirculation region in the wake. Airfoil with DTE modification achieves the same lift coefficient at a lower incidence and thus at a lower drag coefficient, so that lift-to-drag ratio is increased in transonic cruise conditions compared to the original airfoil. The reduction in drag due to DTE modification is associated with weakening of shock strength and delay of shock which is greater than the increase in base drag.

  • PDF

Study of Flow Structure and Pressure Drop Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 유동구조 및 압력강하 특성에 관한 연구)

  • Lee, K.S.;Jeon, C.D.;Lee, J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.140-154
    • /
    • 1994
  • Experimental studies were performed to determine the characteristics of flow structure and pressure drop in 15 : 1 scale models of multi-louvered fin heat exchanger in a wide range of variables($L_P/F_P=0.5{\sim}1.23$, ${\theta}=27^{\circ}{\sim}37^{\circ}$, $Re_{LP}=50{\sim}2000$). Flow structure inside the louvered fin was analyzed by smoketube method and new correlations on flow efficiency and drag coefficient were suggested. The new definition for flow efficiency, which modifies the existing flow efficiency, can predict the flow efficiency in the range above mentioned and is represented as a function of Reynolds number, louver pitch to fin pitch ratio, louver angle at low Reynolds number. Drag coefficient which is defined here is a function of Reynolds number, louver pitch to fin pitch ratio, louver angle below critical Reynolds number, and can be represented by a function of louver pitch to fin pitch ratio only above the critical Reynolds number.

  • PDF

Flow Around an Elliptic Cylinder Placed Near a Plane Boundary (평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구)

  • Kim, Seong-Min;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).

AERODYNAMIC STUDY ON BOBSLEIGH BUMPER SHAPE (봅슬레이 범퍼 형상에 대한 공력학적 연구)

  • Lee, Y.N.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.37-45
    • /
    • 2015
  • A parametric study on the shapes of bobsleigh bumpers has been performed to reduce the aerodynamic drag. Effects of geometric parameters, such as leading angle of leading bumper, the ratio of minimum width to maximum width of leading bumper, the ratio of leading bumper length to trailing bumper length, trailing angle of trailing bumper, and the ratio of bumper height to installation location of bumper from the bottom of bobsleigh, on the aerodynamic performance of the bobsleigh were estimated using 3-D Reynolds-averaged Navier-Stokes equations. The turbulence was analyzed using the shear stress turbulence model. Reynolds number based on the hydraulic diameter of the external flow channel was in the range of 150,000~1,000,000. Numerical results for drag coefficient were validated compared to experimental data. Ranges of the five geometric parameters were determined according to the rule of Federation Internationale de Bobsleigh et de Tobaganning. The aerodynamic performance of the bobsleigh sled was most sensitive to the leading angle of leading bumper and the ratio of minimum width to maximum width of leading bumper.