• 제목/요약/키워드: Drag and drop

검색결과 103건 처리시간 0.027초

Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링 (Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software)

  • 김현탁;임상혁;윤호성;박정배;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.984-990
    • /
    • 2017
  • 상용 CFD 프로그램 Flow-3d를 활용하여, 표면 장력 탱크 적용을 위한 메시 스크린의 모델링 및 추진제 배출 해석을 수행하였다. Flow-3d 내 거시적 다공성 매체 모델을 사용하였으며, $350{\times}2600$, $400{\times}3000$, $510{\times}3600$ DTW 메시 스크린에 대한 공극률, 모세관압, 항력계수를 스크린 모델에 대입 후, 기포점 측정 시뮬레이션을 수행하였다. 시뮬레이션 결과를 실험 데이터와 비교하였으며, 메시 스크린 모델링의 적절성을 검증하였다. 이를 기반으로 스크린 모델을 포함한 PMD 구조체에 대한 추진제 배출 해석을 수행하였다. 추진제는 액상의 NTO를 가정하였으며, $3{\times}10^{-3}g$ 가속 조건에서 초기 유량을 만족하도록 void를 유입시켰다. 메시 스크린을 통한 차압은 초기 약 270 Pa에서 시간에 따라 증가하였으며, 스크린 모델의 예상 기포점과 유사한 630 Pa에 이르기까지 액상 추진제 배출을 지속하였다.

  • PDF

Non-dimensional analysis of cylindrical objects freely dropped into water in two dimensions (2D)

  • Zhen, Yi;Yu, Xiaochuan;Meng, Haozhan;Li, Linxiong
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.267-287
    • /
    • 2020
  • The dropped objects are identified as one of the top ten causes of fatalities and serious injuries in the oil and gas industry. It is of importance to understand dynamics of dropped objects under water to accurately predict the motion of dropped objects and protect the underwater structures and facilities from being damaged. In this paper, we study non-dimensionalization of two-dimensional (2D) theory for dropped cylindrical objects. Non-dimensionalization helps to reduce the number of free parameters, identify the relative size of effects of force and moments, and gain a deeper insight of the essential nature of dynamics of dropped cylindrical objects under water. The resulting simulations of dimensionless trajectory confirms that drop angle, trailing edge and drag coefficient have the significant effects on dynamics of trajectories and landing location of dropped cylindrical objects under water.

DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

  • Kim, S.K.;Ko, W.I.;Lee, Yoon Hee
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.665-674
    • /
    • 2013
  • This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

A Visual Approach for Data-Intensive Workflow Validation

  • Park, Minjae;Ahn, Hyun;Kim, Kwanghoon Pio
    • 인터넷정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.43-49
    • /
    • 2016
  • This paper presents a workflow validation method for data-intensive graphical workflow models using real-time workflow tracing mode on data-intensive workflow designer. In order to model and validate workflows, we try to divide as modes have editable mode and tracing mode on data-intensive workflow designer. We could design data-intensive workflow using drag and drop in editable-mode, otherwise we could not design but view and trace workflow model in tracing mode. We would like to focus on tracing-mode for workflow validation, and describe how to use workflow tracing on data-intensive workflow model designer. Especially, it is support data centered operation about control logics and exchange variables on workflow runtime for workflow tracing.

Predicting the popularity of TV-show through text mining of tweets: A Drama Case in South Korea

  • 김도연;김유신;최상현
    • 인터넷정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.131-139
    • /
    • 2016
  • This paper presents a workflow validation method for data-intensive graphical workflow models using real-time workflow tracing mode on data-intensive workflow designer. In order to model and validate workflows, we try to divide as modes have editable mode and tracing mode on data-intensive workflow designer. We could design data-intensive workflow using drag and drop in editable-mode, otherwise we could not design but view and trace workflow model in tracing mode. We would like to focus on tracing-mode for workflow validation, and describe how to use workflow tracing on data-intensive workflow model designer. Especially, it is support data centered operation about control logics and exchange variables on workflow runtime for workflow tracing.

GMAW의 금속이행에 영향을 주는 변수연구를 위한 계측 시스템과 조건해석 (Study of variables influencing on the metal transfer in GMAW)

  • 이세헌
    • Journal of Welding and Joining
    • /
    • 제11권1호
    • /
    • pp.73-79
    • /
    • 1993
  • The phenomenon of metal transfer has been investigated for different transfer modes using a digital high speed motion analyzer and an arc shadow-graphing system based on a laser source and related optical system. It was observed that the pinch instability phenomenon did not occur for the globular transfer mode, since the liquid globule was then spherical rateher than a cylindrical liquid bar. On increasing the ratio of carbon dioxide to argon, the transition current from globular to spray transfer generally increased, but it is interesting that the transition was observed to occur at the lowest current in a 5% CO$_{2}$-95% argon gas mixture. For pure carbon dioxide and helium shielding gases, the drop frequency increased slowly with increasing current. At high currents or an argon based shielding gas, the length of liquid bar decreased as the carbon dioxide content increased. The acceleration of a droplet within the arc was determined using the gas drag force theory and was found to be greater than the experimental results.

  • PDF

가상 기구설계 시뮬레이터에 관한 연구 (A Study on Virtual Machine Design Simulator)

  • 임홍재;주재환;성상준;장시열;이기성;신동훈;정재일;임시형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1559-1563
    • /
    • 2007
  • This paper presents a virtual machine design simulation program. Kinematics of various mechanisms can be modeled with 3 dimensional geometry and actuators. CAD data for any machine component can be easily imported in STL format. Machine components are assembled with kinematic joints simply by drag and drop function in virtual graphic simulator. Interference and collision of any component with other components can be identified during the motion simulation. Graphic user interface program is developed using Microsoft Direct X code. A precision micro stage system is demonstrated with the proposed virtual machine design simulator.

  • PDF

멀티미디어 교안 제작을 위한 SMIL 기반 웹 에디터 (A SMIL-based Web Editor for Multimedia Teaching Aids)

  • 장성호;손주영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (3)
    • /
    • pp.495-497
    • /
    • 1999
  • 웹이 인터넷을 대표하는 서비스가 되고 많은 사람들이 웹을 사용하면서 HTML의 많은 한계가 지적되었다. 그중 멀티미디어 데이터의 처리를 위해 DHTML, JAVA 등의 기술이 도입되었으나 네트워크의 과부하나 브라우저의 부하 등의 단점이 나타났다. 이에 W3C에서는 멀티미디어 데이터를 이용한 웹 페이지를 제작하기 위한 SMIL의 표준을 제정하였다. 본 논문에서는 멀티미디어 데이터간 시공간적 동기화 정보를 포함하는 웹 페이지 제작을 위한 SMIL 문서 에디터를 설계하였다. 설계된 SMIL 문서 에디터는 멀티미디어 교실에서 활용되는 교안을 제작하는데 중점을 두었다. 멀티미디어교안 작성 시 효율적인 정보 전달을 위해 여러 미디어들이 동기화 정보를 원활하게 교환할 수 있는 수단이 필요하다. 이러한 멀티미디어 교안을 작성할 때 교사들의 컴퓨터 조작 능력을 고려하면서도 교육의도를 완전하게 표현할 수 있는 WYSIWYG 방식과 Drag & Drop 방식을 채택하였다. 익숙하지 않은 교사들이 쉽게 SMIL로 멀티미디어 웹 페이지를 작성할 수 있도록 간단하면서도 직관적인 사용자 인터페이스 위주로 설계된 점이 가장 큰 특징이다.

  • PDF

Solar concentrator optimization against wind effect

  • Sayyed Hossein Mostafavi;Amir Torabi;Behzad Ghasemi
    • Wind and Structures
    • /
    • 제38권2호
    • /
    • pp.109-118
    • /
    • 2024
  • A solar concentrator is a reflective surface in the shape of a parabola that collects solar rays in a focal area. This concentrator follows the path of the sun during the day with the help of a tracking system. One of the most important issues in the design and construction of these reflectors is the force exerted by the wind. This force can sometimes disrupt the stability of the concentrator and overturn the entire system. One of the ways to estimate the force is to use the numerical solution of the air flow in three dimensions around the dish. Ansys Fluent simulation software has been used for modeling several angles of attack between 0 and 180 with respect to the horizon. From the comparison of the velocity vector lines on the dish at angles of 90 to - 90 degrees, it was found that the flow lines are more concentrated inside the dish and there is a tendency for the flow to escape around in the radial direction, which indicates the presence of more pressure distribution inside the dish. It was observed that the pressure on the concave surface was higher than the convex one. Then, the effect of adding a hole with various diameter of 200, 300, 400, 500, and 600 mm on the dish was investigated. By increasing the diameter up to the optimized size of 400 mm, a decrease in the maximum pressure value in the pressure distribution was shown inside the dish. This pressure drop decreased the drag coefficient. The effect of the hole on the dish was also investigated for the 30-degree angled dish, and it was found that the results of the 90-degree case should be considered as the basis of the design.

Spherical and cylindrical microencapsulation of living cells using microfluidic devices

  • Hong, Joung-Sook;Shin, Su-Jung;Lee, Sang-Hoon;Wong, Edeline;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.157-164
    • /
    • 2007
  • Microencapsulation of cells within microfluidic devices enables explicit control of the membrane thickness or cell density, resulting in improved viability of the transplanted cells within an aggressive immune system. In this study, living cells (3T3 and L929 fibroblast cells) are encapsulated within a semi-permeable membrane (calcium crosslinked alginate gel) in two different device designs, a flow focusing and a core-annular flow focusing geometry. These two device designs produce a bead and a long microfibre, respectively. For the alginate bead, an alginate aqueous solution incorporating cells flows through a flow focusing channel and an alginate droplet is formed from the balance of interfacial forces and viscous drag forces resulting from the continuous (oil) phase flowing past the alginate solution. It immediately reacts with an adjacent $CaCl_2$ drop that is extruded into the main flow channel by another flow focusing channel downstream of the site of alginate drop creation. Depending on the flow conditions, monodisperse microbeads of sizes ranging from $50-200\;{\mu}m$ can be produced. In the case of the microfibre, the alginate solution with cells is extruded into a continuous phase of $CaCl_2$ solution. The diameter of alginate fibres produced via this technique can be tightly controlled by changing both flow rates. Cell viability in both forms of alginate encapsulant was confirmed by a LIVE/DEAD cell assay for periods of up to 24 hours post encapsulation.