• 제목/요약/키워드: Drag and drop

검색결과 102건 처리시간 0.62초

A PRESSURE DROP MODEL FOR PWR GRIDS

  • Oh, Dong-Seok;In, Wang-Ki;Bang, Je-Geon;Jung, Youn-Ho;Chun, Tae-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.483-488
    • /
    • 1998
  • A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development.

  • PDF

Performance Prediction of Rocket Engine Combustion and Estimation of Experimental Results (로켓 엔진의 연소 성능 예측 및 시험)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권5호
    • /
    • pp.718-724
    • /
    • 2000
  • A model for depicting the rocket engine combustion process is presented and several experiments near a design point are provided with a FOOF type of unlike impinging injector for a propellant combination of Jet A-1 fuel and liquid-oxygen. The model is based on the assumption that the vaporization is the rate-controlling combustion process. The effects of initial drop size and initial drop velocity are systematically shown and discussed. It is seen that in the midst of considered parameters the change of initial drop size is more sensitive to the performance. The proposed model describes qualitative trends of combustion process well despite of its simplicity.

A Numerical Study on the emission Characteristics of DI Diesel Engine by Wall Impingement of Spray (벽면 충돌 분사에 의한 DI디젤엔진 배기가스 특성의 수치해석적 연구)

  • 최성훈;황상순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제6권3호
    • /
    • pp.97-105
    • /
    • 1998
  • High pressure injection is recently used to reduce the emissions and increase the power of DI diesel engine. This high pressure injection makes the spray strike the cylinder wall. This spray/wall impingement is known to affect the emission and performance of DI diesel engine such that it is very important to know the spray/wall impingement process. In this study, multidimensional computer program KIVA-II was used to clarify the effect of spray wall impingement by different injection spray angle with the spray/wall impingement model consiedering rebound and slide motion and also the improved submodel for liquid breakup, drop distortion model.

  • PDF

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

Study on Filter Drag Due to the Change of Operation Conditions in a Pulse Air Jet-type Bag Filter[I] (충격기류식 여과집진장치에서 운전조건 변화로 인한 여과저항에 관한 연구[I])

  • Ryu, Jae-Yong;Suh, Jeong-Min;Park, Jeong-Ho;Jeon, Bo-Kyung;Choi, Kum-Chan;Son, Yoyng-Il
    • Journal of Environmental Science International
    • /
    • 제16권4호
    • /
    • pp.449-458
    • /
    • 2007
  • Research results for the pressure drop variance depending on operation conditions such as change of inlet concentration, pulse interval, and face velocity, etc., in a pulse air jet-type bag filter show that while at $3kg/cm^2$ whose pulse pressure is low, it is good to make an pulse interval longer in order to form the first layer, it may not be applicable to industry because of a rapid increase in pressure. In addition, the change of inlet concentration contributes more to the increase of pressure drop than the pulse interval does. In order to reduce operation costs by minimizing filter drag of a filter bag at pulse pressure $5kg/cm^2$, the dust concentration should be minimized, and when the inlet dust loading is a lower concentration, the pulse interval in the operation should be less than 70 sec, but when inlet dust loading is a higher concentration, the pulse interval should be below 30 sec. In particular, in the case that inlet dust loading is a higher concentration, a high-pressure distribution is observed regardless of pulse pressure. This is because dust is accumulated continuously in the filter bag and makes it thicker as filtration time increases, and thus the pulse interval should be set to below 30 sec. If the equipment is operated at 1m/min of face velocity, while pressure drop is low, the bag filter becomes larger and thus, its economics are very low due to a large initial investment. Therefore, a face velocity of around 1.5 m/min is considered to be the optimal operation condition. At 1.5 m/min considered to be the most economical face velocity, if the pulse interval increases, since the amount of variation in filter drag is large, depending on the amount of inlet dust loading, the operation may be possible at a lower concentration when the pulse interval is 70 sec. However, for a higher concentration, either face velocity or pulse interval should be reduced.

Numerical investigation on the hydraulic loss correlation of ring-type spacer grids

  • Ryu, Kyung Ha;Shin, Yong-Hoon;Cho, Jaehyun;Hur, Jungho;Lee, Tae Hyun;Park, Jong-Won;Park, Jaeyeong;Kang, Bosik
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.860-866
    • /
    • 2022
  • An accurate prediction of the pressure drop along the flow paths is crucial in the design of advanced passive systems cooled by heavy liquid metal coolants. To date, a generic pressure drop correlation over spacer grids by Rehme has been applied extensively, which was obtained from substantial experimental data with multiple types of components. However, a few experimental studies have reported that the correlation may give large discrepancies. To provide a more reliable correlation for ring-type spacer grids, the current numerical study aims at figuring out the most critical factor among four hypothetical parameters, namely the flow area blockage ratio, number of fuel rods, type of fluid, and thickness of the spacer grid in the flow direction. Through a set of computational fluid dynamics simulations, we observed that the flow area blockage ratio dominantly influences the pressure loss characteristics, and thus its dependence should be more emphasized, whereas the other parameters have little impact. Hence, we suggest a new correlation for the drag coefficient as CB = Cν,m2.7, where Cν,m is formulated by a nonlinear fit of simulation data such that Cν,m = -11.33 ln(0.02 ln(Reb)).

Study on the Drag Reduction and Heat Transfer Efficiency Reduction of the Non-Ionic Surfactant (비이온 계면활성제의 마찰 및 열교환효율 저감 특성 연구)

  • Cho, Sung-Hwan;Tae, Choon-Seob
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제19권2호
    • /
    • pp.133-141
    • /
    • 2007
  • The drag reduction (DR) and heat transfer efficiency reduction (HTER) of nonionic surfactant according to the fluid velocity, temperature and surfactant concentration were investigated experimentally. For this study, several kinds of new surfactant which contains amine-oxide and betaine were developed. And experimental apparatus equipped with two water storage tanks temperature controlled, pumps, testing pipe network, two flowmeters, two pressure gauges, heat exchanger, and data logging system was built. Results showed that existing alkyl ammonium surfactant (CTAC) had DR of $0.6{\sim}0.8$ for $1,000{\sim}2,000\;ppm$ in fluid temperature of $50{\sim}60^{\circ}C$ and had very low DR in fluid temperature over $70^{\circ}C$. And new amino oxide and betaine surfactant (SAOB) had lower DR in fluid temperature of $50{\sim}60^{\circ}C$ compared with CTAC but in fluid temperature of $70{\sim}80^{\circ}C$ DR was $0.6{\sim}0.8$ for 1$1,000{\sim}2,000\;ppm$.

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구)

  • Kang, Seung Mo;Abdelmotalib, Hamada;Ko, Dong Guk;Park, Woe-Chul;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제39권11호
    • /
    • pp.861-869
    • /
    • 2015
  • In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.

Numerical study on the effect of three-dimensional unsteady tunnel entry flow characteristics on the aerodynamic performance of high-speed train (터널진입시 비정상 유동특성이 고속전철의 공력성능에 미치는 영향에 관한 수치해석적 연구)

  • 정수진;김태훈;성기안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.596-606
    • /
    • 2002
  • The three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, PAM-FLOW based on FEM method has been applied to analyze the flow field around the high speed train which is entering into a channel. From the present study, the pressure and flow transients were calculated and analyzed. The generation of compression wave was observed ahead of train and the high pressure in the gap between the train and the tunnel was also found due to the blockage effects. It was found that abrupt fluctuation in pressure exists in the region from train nose to shoulder of train corresponding to 10% of total length of train during tunnel entry. Computed time history of aerodynamic forces of train during tunnel entry show that drag coefficient rapidly rises and saturates at about non-dimensional time 0.31. The total increase of drag coefficient before and after tunnel entry is about 1.1%. Transient profile of lift force shows similar pattern to drag coefficient except abrupt drop after saturation and lift force in the tunnel increases 0.08% more than that before tunnel entry.

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.