• Title/Summary/Keyword: Dr. Wastewater

Search Result 4, Processing Time 0.016 seconds

Evaluation of influent changing effect on the STP performance using Dr. Wastewater (Dr. Wastewater program의 적용을 통한 하수처리장 운전에 미치는 유입수 변동 영향평가)

  • Kim, Youn Kwon;Kim, Hong Suck;Seo, In Seok;Kim, Byung Goon;Han, In Sun;Kim, Jin Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.647-655
    • /
    • 2008
  • Sewer Rehabilitation Project (SRP) is planed, designed and constructed to perform its intended performance as sewerage delivery systems. Recently, a subject of performance evaluation methodology development for SRP has become a great deal of concern among researchers in Korea. From the view point of Sewage Treatment Plant (STP), however, the estimation of improvement efficiency for SRP is in lack of reliability due to the fact that affections for the treatment efficiency and operating condition are not reflected on SRP design and construction. In this study, statistical methodology was used in the analysis of data, which are taken during 1,186 days ($1^{st}$ Jan. 2005 - $31^{th}$ Mar. 2008) from the influent, effluent and operating conditions of full-scale STP($25,000m^3/d$). Then the effect of SRP on the influent characteristics and operating conditions changing was compared and evaluated. Results from the statistical evaluation show that SRP causes characteristic changes in influent and exerts a significant effect especially on the performance of STP.

A Study on Evaluation and Prioritization Process of Wastewater Reuse Alternative in Watershed Level (유역차원의 하수처리수 재이용 대안평가와 우선순위 결정과정에 관한 연구)

  • Chung, Eun-Sung;Jun, Sang-Mook;Lee, Jin Hee;Ahn, Jong Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.259-269
    • /
    • 2013
  • This study aims to show the feasibility of wastewater reuse through hydrological analysis and propose a framework for planning using multi-criteria decision making technique. Ten alternatives of wastewater reuse (BOD: 3.0 mg/L & 4.7 mg/L) and two references in the urban watershed were considered and analyzed by using Hydrological Simulation Program in Fortran (HSPF). Though wastewater reuse has a positive effect on water quantity, it may degrade the water quality due to the high discharge concentration. This study showed that wastewater reuse can be a great alternative for the rehabilitation of distorted water cycle, if the quality is improved up to the natural streamflow and the quantity is increased up to the instreamflow requirement. In addition, to determine the project priority, three criteria were compared: 1) impacts on water quantity and water quality, respectively, 2) consideration of present hydrologic vulnerabilities on water quantity and quality and not, and 3) social and economic considerations and not. From the performance values to all criteria, the specific ranking can be derived and the feasibility of each wastewater reuse project can be checked with the comparison of the existing facilities. As a result, DJ and DR were derived to become effective in any evaluation conditions while SS and WG were improper alternatives if various criteria were considered. The decision making for project prioritization must be careful with the consideration of various impacts of wastewater reuse because the evaluation of wastewater reuse alternative showed very different priorities for each criteria.

Separation of cadmium and chromium heavy metals from industrial wastewater by using Ni-Zn nanoferrites

  • Thakur, Atul;Punia, Pinki;Dhar, Rakesh;Aggarwal, R.K.;Thakur, Preeti
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.457-465
    • /
    • 2022
  • The potentials of NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoadsorbents were investigated for removal of Cd and Cr from contaminated water from an electroplating industry in Himachal Pradesh, India. Optimal values were recorded under batch adsorption experiments performed to remove dissolved heavy metal ions from industrial wastewater. The specific surface area (SSA) of nanoadsorbents perceived to vary in a range 35.75-45.29 cm2/g and was calculated from the XRD data. The influence of two operating parameters, contact time and dopant (Ni) concentration was also investigated at pH ~7 with optimum dosage. Kinetic studies were conducted within a time range of 2-10 min with rapid adsorption of cadmium and chromium ions onto Ni0.2Zn0.8Fe2O4 nanoadsorbents. Pseudo-second-order kinetic model was observed to be well fitted with the adsorption data that confirmed the only existence of chemisorption throughout the adsorption process. The maximum adsorption efficiency values observed for Cd and Cr were 51.4 mg/g and 40.12 mg/g, respectively for different compositions of prepared series of nanoadsorbents. The removal percentage of Cd and Cr was found to vary in a range of 47.7%-95.25% and 21%-50% respectively. The prepared series of nanoferrite found to be suitable enough for adsorption of both heavy metal ions.

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(1) - Chemical Precipitation or Biological Treatment - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(1) -화학적 응집 및 생물학적 처리-)

  • Han Myung Ho;Huh Man Woo
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to remove the dyes in dye wastewater by the chemical precipitation or biological treatment which are one of the main pollutants in dye wastewater. In order to remove the disperse dyes effectively in aqueous solution by chemical precipitation process, coagulation and flocculation tests were carried out using several coagulants on various reaction conditions. It was found that the Ferrous sulfate was the most effective coagulant for the removal of disperse dye(DB79), and we could get the best result for the removal of disperse dye(DB56) in the aspects of TOC removal efficiency and sludge yield. When the Ferrous sulfate dosage was 800mg/l, the sludge settling velocity was very fast$(SV_{30}=4\%)$, and the color was effectively removed in the disperse dye(DB79) solution. Although the color removal was ineffective when the Alum was used as a coagulant, the sludge yield decreased in comparison with the Ferrous sulfate or the Ferric sulfate being used in the disperse dye(DB56) solution. In order to decolorize disperse dye(DR17) by using biological treatment process, a strain which has potential ability to degrade disperse dyes was isolated from natural system. The optimal culture conditions of temperature and pH were found to be $40^{\circ}C\;and\;8.5\~9$, respectively. When yeast extract was mixed with polypeptone at the mixing ratio of 1:1 as a nitrogen source, decolorization efficiency was highest$(93\%)$ among the nitrogen sources. The strain screened was excellent to adjust to pH, and it seems to have ability to control pH needed to growth. The optimal culture conditions in concentration of $MgSO_{4.}\cdot7H_2O\;and\;KH_2PO_4$ were $0.1\%(w/v)\;and\;0.2\%(w/v)$, respectively. Strains degrading and decolorizing reactive dyes, RB198 and RR141 which were isolated from water system, are named RBK1 and RRK. And the cell growth characteristics of RBK1 and RRK were investigated. The optimal culture conditions of temperature and pH were found to be 30t' and 7.0, respectively. Optimum nitrogen source was peptone, and it was found that decolorization efficiencies by strains RBK1 and RRK, were $85\%\;and\;62\%$, respectively, with introduction of 4,000mg/l of peptone. In the case of RBK1, color removal efficiencies were very high below 400mg/l. Decolorization efficiency was over $90\%$ at 20hours of culture time. The Color degradation ability of RRK was lower than that of RBK1.