• 제목/요약/키워드: Downward Load

Search Result 70, Processing Time 0.026 seconds

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

A Study on the Stratum Thickness Arrangement and Roof Bolt Support Design using Robust Design (강건설계를 이용한 층서두께 배열과 루프볼트 지보설계에 관한 연구)

  • Jang, Myoung Hwan
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.142-155
    • /
    • 2018
  • The ${\bigcirc}{\bigcirc}$ mine has irregularly developed stratum around the ore body. The purpose of this study is to array irregular stratum thickness systematically for effective roof bolting and to implement a supporting system corresponding to it. The number of 81 cases combined with stratum thicknesses was limited to 9 cases by robust design. For each case, the load height which can act as a roof load was determined by the characteristics of stratum and RMR. The load range due to the load height is calculated assuming block shaped and arch shape. The support load of the roof bolt was considered as the average load of the two methods. Numerical analysis results of the support design showed that the cable bolt was more effective for the roof supporting fully grouted than the anchoring type. As a result of the construction, it was possible to control the roof, but all of the roof was gradually sinking downward due to the deformation of the side wall of the mine tunnel.

Numerical simulation of dynamic Interactions of an arctic spar with drifting level ice

  • Jang, H.K.;Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.345-362
    • /
    • 2016
  • This study aims to develop the numerical method to estimate level ice impact load and investigate the dynamic interaction between an arctic Spar with sloped surface and drifting level ice. When the level ice approaches the downward sloped structure, the interaction can be decomposed into three sequential phases: the breaking phase, when ice contacts the structure and is bent by bending moment; the rotating phase, when the broken ice is submerged and rotated underneath the structure; and the sliding phase, when the submerged broken ice becomes parallel to the sloping surface causing buoyancy-induced fictional forces. In each phase, the analytical formulas are constructed to account for the relevant physics and the results are compared to other existing methods or standards. The time-dependent ice load is coupled with hull-riser-mooring coupled dynamic analysis program. Then, the fully coupled program is applied to a moored arctic Spar with sloped surface with drifting level ice. The occurrence of dynamic resonance between ice load and spar motion causing large mooring tension is demonstrated.

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

Influence of Bias Weight of Vibratory Pile Driver on Load Transfer Characteristics of Piles (진동타입기의 사하중이 말뚝의 하중전이 특성에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5268-5273
    • /
    • 2013
  • Technique for analyzing pile installed by vibratory pile driver was developed and results of analysis obtained from variation of bias weight were studied. It can be seen from load transfer curve for dynamic skin friction that load transfer curve shift to downward as bias weight increases. Shape of load transfer curve for dynamic skin friction becomes closer to shape of coil as the bias weight decreases. Magnitudes of toe resistances were not affected by the bias weight. Shape of load transfer curve for dynamic toe resistance shows the similar tendency as the load transfer curve for skin friction exhibits. Vertical displacement increases as the bias weight increases and the shape of vertical displacement with time shows more distinct shape of wave.

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Numerical investigation of responses of a piled raft to twin excavations: Role of sand density

  • Karira, Hemu;Kumar, Aneel;Ali, Tauha Hussain;Mangnejo, Dildar Ali;Yaun, Li
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2022
  • In densely built areas, the development of underground transportation systems often involves twin excavations, which are sometimes unavoidably constructed adjacent to existing piled foundations. Because soil stiffness degrades with induced stress release and shear strain during excavation, it is vital to investigate the piled raft responses to subsequent excavation after the first tunnel in a twin-excavation system. The effects of deep excavations on existing piled foundations have been extensively investigated, but the influence of twin excavations on a piled raft is seldom reported in the literature. In this study, three-dimensional numerical analyses were carried out to investigate the influence of sand density on an existing piled raft (with a working load on top of the raft) due to twin excavations. A wide range of relative density (Dr) from loosest (30%), loose to medium (50% and 70%), and densest (90%) were selected to investigate the effects on settlement and load transfer mechanism of the piled raft during twin excavations. An advanced hypoplastic sand model (which can capture small-strain stiffness and stress-state dependent dilatancy of sand) was adopted. The model parameters are calibrated against centrifuge test results in sand reported in the literature. From the computed results, it is found that twin excavations in loose sand (Dr=30%) caused the most significant settlement. This is because of the higher stiffness of denser sand (Dr=90%) than that of loose sand. In contrast, a much larger tilting (maximum magnitude=0.18%) was computed in dense sand than in loose sand after the completion of the first excavation. As far as the load transfer mechanism along the piles is concerned, an upward load transfer to mobilize shaft resistance is observed in loose sand. On the contrary, a downward load transfer is observed in dense sand.

The Impact Loads on the Hitch Point of the Tiller-Trailer System (동력경운기의 경사지 견인 및 주행 특성에 관한 연구(제일보)-동력경운기 -트레일계의 힛치점에 작용하는 충격력-)

  • 송현갑;장창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1977
  • Transporting agricultural products and the other material by the two-wheel-tractor (power-tiler)and trailer system may be one of its most widely used farming functions.The safety and hitching load for all the previaling performing conditions may be the general concern over the operation of the tiller-trailer system. In this study, a mathematical model to determine the static and dynamic forces excerting on the hitch point were developed . Based on the analysis of the model and the field measurements. the limiting hitching load and critical slope were analyzed. The results of the study are summarized as follows ; 1) The limit angle of slope land for the safety steering that two-wheel tractor-single axle trailer system was able to transport agricultural products was the direct angle (${\gamma}$) = 8 ; the cross angle$\beta$) 15 ; and it was decreased in accordance with the increase of carrying load ($W_4). 2) The critical velocity for safe operation in case of running on downward hill road was about 1.08m/sec. 3) The limiting carrying load for the safe steering was W$_4$=600kg. The degree of the safe steering for different braking methods was given in order as follows ; Simulataneous braking the tractor and trailer , braking the trailer only, and braking tractor only. 4) Among the three components of impact loads excerting on the hitch point, the component in the lateral direction ($P_{Vy}$) was near zero in spite of increase of hitching load ($W_4) , while the components in the other two mutually perpedicular directions ($P_{Vx}$ and ($P_{Vz}$) ) had larger values in horizontal plane than those in the slope lands. 5) Moment of forces on the lateral direction (M$y$) had the largest value among the three components of impact moment acting on the hitch point, however all the components were sharply increased in accordance with the increase of hitching loads ($W_4. Three components of the moment were the negative values.

  • PDF

A Study on the Water Quality Changes of TMDL Unit Watershed in Guem River Basin Using a Nonparametric Trend Analysis (비모수 경향분석법 적용을 통한 금강수계 총량관리 단위유역의 수질변화 연구)

  • Kim, Eunjung;Kim, Yongseok;Rhew, Doughee;Ryu, Jichul;Park, Baekyung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.148-158
    • /
    • 2014
  • In order to assess the effect of TMDLs management and improve that in the future, it is necessary to analyze long-term changes in water quality during management period. Therefore, long term trend analysis of BOD was performed on thirty monitoring stations in Geum River TMDL unit watersheds. Nonparametric trend analysis method was used for analysis as the water quality data are generally not in normal distribution. The monthly median values of BOD during 2004~2010 were analyzed by Seasonal Mann-Kendall test and LOWESS(LOcally WEighted Scatter plot Smoother). And the effect of Total Maximum Daily Loads(TMDLs) management on water quality changes at each unit watershed was analyzed with the result of trend analysis. The Seasonal Mann-Kendall test results showed that BOD concentrations had the downward trend at 10 unit watersheds, upward trend at 4 unit watersheds and no significant trend at 16 unit watersheds. And the LOWESS analysis showed that BOD concentration began to decrease after mid-2009 at almost all of unit watersheds having no trend in implementation plan watershed. It was estimated that TMDLs improved water quality in Geum River water system and the improvement of water quality was made mainly in implementation plan unit watershed and tributaries.

Mechanical Characteristics of Cable Truss Roof Systems (케이블 트러스 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Cable structures are lightweight structures of flexible type, cable members have only axial stiffness related to tension, they can carry neither bending nor compression. This study is the analysis of cable truss systems are composed of upper and low cables by connecting bracing cables, the structural principle is based on a tensegrity system by using bracing tension members, discontinuous compression members and continuous tension members. A hanging roof of cable truss system is too flexible against vertical loads, most cable members are stabilized by connecting the prestressed upper and lower cable by bracing cables. A cable truss roof system is formed by adding a set of cables with reverse curvature to the suspension cables. With the sets of cables having opposite curvature to each other, cable truss is able to carry vertical load in both upward and downward direction with equal effectiveness, and then a cable truss acts as load bearing elements by the assemble of ridge cables, valley cables and bracing cables. This paper will be shown the geometric non-linear analysis result of cable truss systems with various sag ratio for deflections and tensile forces, the analytical results are compared with the results of other researchers.