• Title/Summary/Keyword: Downlink resource allocation

Search Result 68, Processing Time 0.025 seconds

A Joint Allocation and Path Selection Scheme for Downlink Transmission in LTE-Advanced Relay System with Cooperative Relays (협력 통신을 이용한 LTE-Advanced 릴레이 시스템을 위한 하향링크 통합 자원할당 및 경로선택 기법)

  • Lee, Hyuk Joon;Um, Tae Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.211-223
    • /
    • 2018
  • Mobile relay systems have been adopted by $4^{th}$ generation mobile systems as an alternative method to extend cell coverage as well as to enhance the system throughput at cell-edges. In order to achieve such performance gains, the mobile relay systems require path selection and resource allocation schemes that are specifically designed for these systems which make use of additional radio resources not needed in single-hop systems. This paper proposes an integrated path selection and resource allocation scheme for LTE-Advanced relay systems using collaborative communication. We first define the problem of maximizing the downlink throughput of LTE-Advanced relay systems using collaborative communication and transform it into a multi-dimensional multi-choice backpacking problem. The proposed Lagrange multiplier-based heuristic algorithm is then applied to derive the approximate solution to the maximization problem. It is shown through simulations that the approximate solution obtained by the proposed scheme can achieve a near-optimal performance.

Joint Relay Selection and Resource Allocation for Cooperative OFDMA Network

  • Lv, Linshu;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.3008-3025
    • /
    • 2012
  • In this paper, the downlink resource allocation of OFDMA system with decode-and-forward (DF) relaying is investigated. A non-convex optimization problem maximizing system throughput with users' satisfaction constraints is formulated with joint relay selection, subcarrier assignment and power allocation. We first transform it to a standard convex problem and then solve it by dual decomposition. In particular, an Optimal resource allocation scheme With Time-sharing (OWT) is proposed with combination of relay selection, subcarrier allocation and power control. Due to its poor adaption to the fast-varying environment, an improved version with subcarrier Monopolization (OWM) is put forward, whose performance promotes about 20% compared with that of OWT in the fast-varying vehicular environment. In fact, OWM is the special case of OWT with binary time-sharing factor and OWT can be seen as the tight upper bound of the OWM. To the best of our knowledge, such algorithms and their relation have not been accurately investigated in cooperative OFDMA networks in the literature. Simulation results show that both the system throughput and the users' satisfaction of the proposed algorithms outperform the traditional ones.

Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.508-522
    • /
    • 2011
  • Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions.

Orthogonal Code Sharing and Radio Resource Allocation in Multibeam Satellite Communication Systems (다중빔 위성 통신 시스템에서 빔간 직교 코드 공유 기법과 동적 무선 자원 할당)

  • Lim, Kwang-Jae;Kim, Soo-Young;Oh, Deok-Gil;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.140-150
    • /
    • 2003
  • In this paper, we propose a novel code sharing method for downlink transmission of mobile satellite communication systems using a multibeam geosynchronous-orbit satellite. In the proposed system, spreading codes are shared among downlink beams in order to increase the system capacity. We also propose efficient radio resource and transmit power allocation schemes for the proposed system. Simplified analysis and simulation results on the system capacity show the capacity improvement by the proposed scheme. The simulation results show that the capacity of the proposed system is more than 2 times as large as that of a conventional multibeam satellite system. In the frequency-selective fading channel, the capacity improvement increases as the interference between orthogonal spreading codes decrease.

Margin Adaptive Optimization in Multi-User MISO-OFDM Systems under Rate Constraint

  • Wei, Chuanming;Qiu, Ling;Zhu, Jinkang
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • In this paper, we focus on the total transmission power minimization problem for downlink beamforming multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems while ensuring each user's QoS requirement. Although the linear integer programming (LIP) solution we formulate provides the performance upper bound of the margin adaptive (MA) optimization problem, it is hard to be implemented in practice due to its high computational complexity. By regarding each user's equivalent channel gain as approximate independent values and using iterative descent method, we present a heuristic MA resource allocation algorithm. Simulation results show that the proposed algorithm efficiently converges to the local optimum, which is very close to the performance of the optimal LIP solution. Compared with existing space division multiple access (SDMA) OFDM systems with or without adaptive resource allocation, the proposed algorithm achieves significant performance improvement by exploiting the frequency diversity and multi-user diversity in downlink multiple-input single-output (MISO) OFDM systems.

A Joint Resource Allocation and Routing Scheme for the IEEE 802.16j Multi-hop Relay Networks (IEEE 802.16j 멀티홉 릴레이 네트워크를 위한 통합 자원 할당-라우팅 기법)

  • Lee, Kyung-Joo;Lee, Hyuk-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Routing (or path selection) is one of the key issues of multi-hop relay networks such as the IEEE 802.16j. Moreover, the allocation of appropriate resource such as bandwidth should not only be made in accordance with the paths selected, but the utilization of radio resource of an entire cell should also be maximized. Due to this interdependency between the problems of resource allocation and routing, it is desired these two problems are addressed simultaneously. In this paper, we propose a joint resource allocation and routing scheme for an OFDMA-based multi-hop cellular system. This scheme uses a polynomial time heuristic algorithm called Multi-Dimensional Multi-choice Knapsack Problem (MMKP) in order to find an approximate solution maximizing the total downlink throughput. In the simulation results, we show that the proposed scheme finds a sub-optimal solution which is superior to a link quality-based routing scheme, but slightly worse than the optimal solution.

  • PDF

Device-to-Device Communication Underlaying Cellular Networks: Connection Establishment and Interference Avoidance

  • Xu, Shaoyi;Wang, Haiming;Chen, Tao;Peng, Tao;Kwak, Kyung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.203-228
    • /
    • 2012
  • It is expected that device-to-device (D2D) communication is allowed to underlay future cellular networks such as IMT-Advanced for spectrum efficiency. This article studies the mechanisms of D2D communication and interference avoidance when the D2D subsystem reuses uplink resources and downlink spectrums with a cellular system, respectively. We firstly propose an effective scheme to establish and maintain D2D communication. Moreover, a novel method to deal with the resource allocation and interference avoidance issues by utilizing the network peculiarity of a hybrid network to share the uplink resource is proposed. Most research focuses on reusing the uplink spectrums, but how to share the downlink frequency bands is seldom addressed. To share the downlink spectrums and avoid the interference to the primary cellular devices, a labeled time slots based mechanism is proposed. Implementation details are described in a real cellular system and simulation results prove that satisfying performance can be achieved by using the proposed mechanisms.

Dynamic Resource Allocation Scheme for Multiple Antenna OFDM-based Wireless Multicast Systems (다중안테나 OFDM 멀티캐스트 시스템을 위한 동적 자원할당 알고리즘)

  • Xu, Jian;Lee, Sang-Jin;Kang, Woo-Seok;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.883-891
    • /
    • 2008
  • Multiple antenna orthogonal frequency division multiplexing (OFDM) is a promising technique for the high downlink-capacity in the next generation wireless systems, in which adaptive resource allocation is an important research issue that can significantly improve the performance with guaranteed QoS for users. However, most of the current resource allocation algorithms are limited to unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDM based systems with multicast service. In the simulation, the performance of multicast system was compared with that of the unicast system. Numerical results also show that by using the proposed algorithms the system capacity is significantly improved compared with the conventional scheme.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).