• Title/Summary/Keyword: Downlink network

Search Result 160, Processing Time 0.028 seconds

Implementation of platform for long-term evolution cell perspective resource utilization analysis

  • Um, Jungsun;Kim, Igor;Park, Seungkeun
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.232-245
    • /
    • 2021
  • As wireless communication continues to develop in limited frequency resource environments, it is becoming important to identify the state of spectrum utilization and predict the amount needed in future. It is essential to collect reliable information for data analysis. This paper introduces a platform that enables the gathering of the scheduling information of a long-term evolution (LTE) cellular system without connecting to the network. A typical LTE terminal can confirm its assigned resource information using the configuration parameters delivered from a network. However, our platform receives and captures only the LTE signal over the air and then enables the estimation of the data relevant to scheduling for all terminals within an LTE cell. After extracting the control channel signal without loss from all LTE subframes, it detects valid downlink control information using the proposed algorithm, which is based on the error vector magnitude of depatterned symbols. We verify the reliability of the developed platform by comparing it with real data from mobile phones and service operators. The average difference in resource block utilization is only 0.28%.

Novel Pre-pushing & Downloading Model in Mobile Peer-assisted Streaming Network

  • Lin, Fuhong;Zhou, Xianewi;Chen, Changjia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3135-3148
    • /
    • 2013
  • The popularization of streaming networks and mobile devices brings a new kind of network called mobile peer-assisted streaming network. In this network, service provider not only offers downloading services, but also pre-pushes resources to users for caching. Users can download their demanded resources while working as servers for uploading the cached data. Also the mobile characteristic makes high package losing probability in this network. So we study how the service provider pre-pushes or the user downloads resources efficiently and effectively while considering the package losing in this paper. We build utility models for service provider and user, and solve the models using Bellman's theory to achieve Nash Equilibrium which shows the service provider's optimal pre-pushing speed and user's optimal downloading speed. The numerical simulation demonstrates the efficiency and effectiveness of our proposed pre-pushing and downloading scheme by comparing to the traditional scheme.

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.

Decentralized Frequency Reuse Scheme Supporting Best-Effort Services in Downlink Small-Cell Network (하향링크 스몰셀 네트워크 환경에서 최선형 서비스를 위한 분산적인 주파수 재사용 기법)

  • Park, Seung Young;Kim, Joon Young;Kim, Dong Hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.360-370
    • /
    • 2013
  • When best-effort traffic users are supported in a downlink small-cell network, conventional schemes assign the channels experiencing low co-channel interference at each base station and provide a better downlink performance to the user near its serving base station, so that conventional schemes are not suitable to fairly support all users. In this paper, we propose a decentralized frequency reuse scheme for a small-cell network, where each basestation chooses a set of channels to fairly support the best-effort traffic users regardless of the distances to their serving basestation. After performing the conventional scheme that each basestation selects the channels which are not used in its adjacent basestations, it updates assigned channels improving the performance of low throughput users in a fully distributed manner with mitigating the overall throughput performance loss. The computer simulation demonstrates that the average throughput performance of the 10th percentile throughput users is improved up to 15% in some case compared to that of the conventional scheme, while allowing the overall throughput loss around 3%.

Improving Overall WMN Performance in Peak Times Using Load-sharing Aware Gateways

  • Vo, Hung Quoc;Dai, Tran Thanh;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.855-857
    • /
    • 2007
  • In recent years, Wireless Mesh Network (WMN) is a compelling topic to many network researchers due to its low cost in deployment, ease and simplicity in installation and scalability and robustness in operation. In WMN, Gateway nodes (Access Point-AP) are in charge of steering the traffic from the external network (e.g. Internet...) to client devices or mesh clients. The limited bandwidth of wireless links between Gateways and intermediate mesh routers makes the Gateways becomes the bottleneck of the mesh network in both uplink stream and downlink stream. In this paper, we propose a mechanism to permit Gateways collaboratively work to manipulate the traffic to fit our network. They will move the traffic from congested links to the unused capacity on other links.

  • PDF

Auto-Configuration Downlink Transmission Power Approach For Femtocell Base Station

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2022
  • Femtocells are being incorporated into heterogeneous networks in order to increase the network capacity. However, intensive deployment of femtocells results in undesired interference, which lowers the system's performance. Controlling the femtocell transmission power is one of of the aspects that can be addressed in order to mitigate the negative effects of the interference. It may also be utilized to facilitate the auto-configuration of the network's conductance, if necessary. This paper proposes the use of an auto-configuration technique for transmission power. The suggested technique is based on the transmission power of macrocells and the coverage provided by femtocells. The simulation findings show that the network's capacity has increased, and the amount of interference has decreased.

Communcations protocol for virtual cellular network (VCN) (가상 셀룰라 망(VCN)을 위한 통신 프로토콜)

  • 정원영;정명순;김화종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2585-2593
    • /
    • 1997
  • Recently a new wireless communication architecture, a Virtual Cellular Network(VCN) was proposed in order to improve the preformance of a wireless network. Unlike a conventional cellular network, the VCN does not use a conventional frequency reuse concep. In the VCN, however, each mobile can use the entire system bandwidth. There is no pre-determined border of cells nor fixed based station for a mobile to communicate with. The performance of the VCN is improved by allowing any mobile to communicate with any port which residues in the virtual cell of the mobile. In this paepr, the Multi Packet Encoding (MPE) is proposed for the VCN uplink in order to improve the unfair throughput and delay caused by the position of the mobiles, and its performance is investigated via computer simulations. The Minimum Group(MG) is proposed for downlink protocol.

  • PDF

Interference Aware Downlink Channel Allocation Algorithm to Improve Throughput on OFDMA Cellular Multihop Networks with Random Topology (임의의 토폴로지를 갖는 OFDMA 다중홉 셀룰러 네트워크의 하향링크 간섭 완화를 위한 채널 할당 방법)

  • Lim, Sunggook;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • Upcoming cellular networks such as LTE-advanced and IEEE 802.16m are enhanced by relay stations to support high data rate multimedia services and minimize the shadow zone with low cost. Enhancing the relay stations, however, divides the multihop cellular network into smaller microcells and the distance between microcells is closer, which intends large intra-cell and inter-cell interference. Especially the access link on downlink in the OFDMA cellular network is the throughput bottleneck due to the severe interference caused by base stations and relay stations transmitting large data to mobile stations simultaneously. In this paper, we present interference aware channel allocation algorithm to avoid severe interference on multihop cellular networks with random topology. Proposed algorithm increases SINR(signal to interference plus noise ratio) and decreases number of required control messages for channel allocation, so that increases overall throughput on the networks.

A New Cell Selection Scheme For Heterogeneous Mobile Communication Networks (이종 이동통신 네트워크를 위한 새로운 셀 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Jo, Jung-Yeon;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2397-2402
    • /
    • 2014
  • Recently, heterogeneous mobile communication network is attracting plenty of interest to serve explosively increasing mobile data traffic. Although the heterogeneous mobile communication network can enhance spatial reuse ratio by using both conventional macro cells and small cells simultaneously, it causes the unbalance in performance of downlink and uplink. In this paper, we propose a new cell selection scheme for heterogeneous mobile communication network. In the proposed cell selection scheme, mobiles select their home cells by considering both uplink and downlink performance, contrary to conventional schemes. We analyze the performance of the proposed scheme in terms of average cell transmission rate through system level simulations and compare it with those of conventional schemes.

Capacity Enhancement of Uni-directional In-band Full-Duplex Cellular Networks through Co-channel Interference Cancellation

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Sun-Ae;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • As implementation of the in-band full duplex (IFD) transceiver becomes feasible, research interest is growing with respect to using IFD communication with cellular networks. However, the cellular network in which the IFD communication is applied inevitably suffers from an increase of the co-channel interference (CCI) due to IFD simultaneous transmission and reception. In this paper, we analyze the performance of a cellular network based on uni-directional IFD (UD-IFD) communication, wherein an IFD base station simultaneously supports downlink and uplink transmissions of half-duplex (HD) users. In addition, a multi-pair CCI cancellation (MP-CCIC) method combining CCIC and user pairing is proposed to improve the performance of the UD-IFD network. Simulation results showed that, compared to a conventional HD cellular network without using CCIC, capacity gain was not obtained in the UD-IFD cellular network. On the other hand, when applying the proposed MP-CCIC, the capacity of the UD-IFD cellular network greatly improved compared to that of an HD cellular network.