• Title/Summary/Keyword: Downlink Capacity

Search Result 123, Processing Time 0.03 seconds

Up/Downlink Hybrid Inter-Cell Coordination Patterns of the TDD/MC-CDMA System, TDD/MC-CDMA

  • Han, Sang-Jin;Lee, Sung-Jin;Lee, Sang-Hoon;Gil, Gye-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.421-428
    • /
    • 2009
  • Inter-cell coordination has been an emerging issue for mitigating inter-cell interference in broadband wireless access networks such as IEEE802.16 and 3GPP LTE (Long Term Evolution). This paper proposes uplink/downlink hybrid inter-cell coordination patterns for a TDD (Time Division Duplex)/MC-CDMA (Multi-Carrier Code Division Multiple Access) system. For the performance analysis, closed forms of inter-cell interferences are derived when uplink and downlink transmissions coexist over a multi-cell environment. In the analysis, we find an optimal ratio of downlink transmit powers of BSs (Base Stations) based on the target outage probability and the performance according to ratios of uplink/downlink transmit powers of MSs (Mobile Stations)/BSs is explored. Our numerical results show that interference mitigation utilizing the characteristics of the uplink and downlink power ratio is very effective in improving system performance in terms of QoS.

Downlink Performance Improvement of TDD CDMA Cellular Networks with Time Slot and Fixed Hopping Station Allocations

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • In this paper, downlink capacity of time duplex division (TDD) based cellular wireless networks utilizing fixed hopping stations is investigated. In the network, a number of fixed subscriber stations act as hopping transmission stations between base stations and far away subscribers, forming a cellular and ad hoc mobile network model. At the radio layer, TDD code division multiple access (CDMA) is selected as the radio interface due to high efficiency of frequency usage. In order to improve the system performance in terms of downlink capacity, we propose different time slot allocation schemes with the usage of fixed hopping stations, which can be selected by either random or distanced dependent schemes. Performance results obtained by computer simulation demonstrate the effectiveness of the proposed network to improve downlink system capacity.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

Downlink Performance of Distributed Antenna Systems in MIMO Composite Fading Channel

  • Xu, Weiye;Wang, Qingyun;Wang, Ying;Wu, Binbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3342-3360
    • /
    • 2014
  • In this paper, the capacity and BER performance of downlink distributed antenna systems (DAS) with transmit antenna selection and multiple receive antennas are investigated in MIMO composite channel, where path loss, Rayleigh fading and lognormal shadowing are all considered. Based on the performance analysis, using the probability density function (PDF) of the effective SNR and numerical integrations, tightly-approximate closed-form expressions of ergodic capacity and average BER of DAS are derived, respectively. These expressions have more accuracy than the existing expressions, and can match the simulation well. Besides, the outage capacity of DAS is also analyzed, and a tightly-approximate closed-form expression of outage capacity probability is derived. Moreover, a practical iterative algorithm based on Newton's method for finding the outage capacity is proposed. To avoid iterative calculation, another approximate closed-form outage capacity is also derived by utilizing the Gaussian distribution approximation. With these theoretical expressions, the downlink capacity and BER performance of DAS can be effectively evaluated. Simulation results show that the theoretical analysis is valid, and consistent with the corresponding simulation.

Precoding Method for Increasing System Capacity in Multiuser MIMO Downlink Channels (다중사용자 MIMO 하향링크 채널 환경에서 시스템 용량 향상을 위한 프리코딩 기법)

  • Kim, Kwang-Yoon;Lee, Jong-Sik;Koo, Sung-Wan;Yang, Jea-Su;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we study precoding techniques for co-channel interference suppression in multiuser MIMO systems. DPC is optimal techniques to achieve the system capacity of multiuser MIMO downlink channels. DPC is not proper in practical wireless systems because complexity is very high. So block diagonal precoding for multiuser MIMO downlink channel is studied. The block diagonal precoding is used to suppress co-channel interference between multiuser. Block diagonal precoding method, whose complexity is reduced by modified null space operation, change multiuser MIMO channel to multiple single-user MIMO channel. We also use V-BLAST decoder in receiver. V-BLAST decoder can achieve increased system capacity in proportion to the number of users. We show improved system performance by using computer simulation.

  • PDF

Effect of Cooperative and Selection Relaying Schemes on Multiuser Diversity in Downlink Cellular Systems with Relays

  • Kang, Min-Suk;Jung, Bang-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • In this paper, we investigate the effect of cooperative and selection relaying schemes on multiuser diversity in downlink cellular systems with fixed relay stations (RSs). Each mobile station (MS) is either directly connected to a base station (BS) and/or connected to a relay station. We first derive closed-form solutions or upper-bound of the ergodic and outage capacities of four different downlink data relaying schemes: A direct scheme, a relay scheme, a selection scheme, and a cooperative scheme. The selection scheme selects the best access link between the BS and an MS. For all schemes, the capacity of the BS-RS link is assumed to be always larger than that of RS-MS link. Half-duplex channel use and repetition based relaying schemes are assumed for relaying operations. We also analyze the system capacity in a multiuser diversity environment in which a maximum signal-to-noise ratio (SNR) scheduler is used at a base station. The result shows that the selection scheme outperforms the other three schemes in terms of link ergodic capacity, link outage capacity, and system ergodic capacity. Furthermore, our results show that cooperative and selection diversity techniques limit the performance gain that could have been achieved by the multiuser diversity technique.

Study on Downlink Capacity based on the Visibility Analysis between KPLO and KDSA/DSN (시험용 달 궤도선과 KDSA 및 DSN 간 가시성 분석을 통한 다운링크 용량 연구)

  • Kim, Changkyoon;Jeon, Moon-Jin;Lee, Sang-Rok;Lim, Seong-Bin
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2016
  • KARI(Korea Aerospace Research Institute) has been developing the KPLO(Korea Pathfinder Lunar Orbiter) for Korean first lunar exploration, and analysing various subjects for the mission success. Especially the performance of the communication is one of important factors, because massive scientific and technical data acquired by multiple payloads might be transferred to ground stations on the Earth. In this paper, we explained the study on the 1-day average downlink capacity based on the visibility analysis between ground stations and KPLO, and described its results.

Statistical Multiplexing Based RFH-OfDMA System for Improving Downlink User Capacity (하향링크 사용자 용량 개선을 위한 통계적 다중화기반의 RFH-OFDMA)

  • Jung, Bang-Chul;Lee, Hyung-Jin;Sung, Dan-Ken
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.578-586
    • /
    • 2005
  • We propose a random frequency hopping orthogonal frequency division multiple access (RFH-OFDMA) system based on statistical multiplexing for improving downlink user capacity. User capacity is defined as the maximum number of users served with a given basic data-rate in a cell. We compare the downlink user capacity of the proposed RFH-OFDMA system with that of the conventional frequency hopping OFDMA (FH-OFDMA) systems in the worst case where all users are located at the cell boundary. User capacity is limited by either the number of subcarriers or other-cell interference (OCI). Simulation results show that the proposed RFH-OFDMA system can accommodate 262 users in a 3-sectored cell, while the conventional FH-OFDMA systems can accommodate 51 users, when the user channel activity and the required Eb/I0 are 0.1 and 6 dB, respectively, and all users are assumed to be located at the cell boundary.

Downlink-First Scheduling of Real-Time Voice Traffic in IEEE 802.11 Wireless LANs (무선랜 시스템에서의 하향 우선 실시간 음성 트래픽 스케줄링)

  • Jeong, Dong W.;Lee, Chae Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.150-156
    • /
    • 2003
  • The IEEE 802.11 MAC (Media Access Control) Protocol supports two modes of operation, a random access mode for nonreal-time data applications processed by Distributed Coordinated Function (DCF), and a polling mode for real-time applications served by Point Coordinated Function (PCF). It is known that the standard IEEE 802.11 is insufficient to serve real-time traffic. To provide Quality of Service (QoS) of real-time traffic, we propose the Downlink-first scheduling with Earliest Due Date (EDD) in Contention Free Period (CFP) with suitable admission control. The capacity and deadline violation probability of the proposed system is analyzed and compared to the standard pair system of downlink and uplink. Analytical and simulation results show that the proposed scheme is remarkably efficient in view of the deadline violation probability.

Time Slot Allocation for CDMA/TDD Indoor Wireless Systems

  • Lee Chae Y.;Sung Ki Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.144-151
    • /
    • 2002
  • Future wireless communication systems are expected to provide a broad range of multimedia services in which the asymmetry of traffic load between uplink and downlink is a significant feature. The rode division multiple access system with tune division duplex mode (CDMA/TDD) is a good solution to cope with the traffic asymmetry problem. However. the TDD system is subject to inter-cell interference compared to frequency division duplex (FDD) system. Since both uplink and downlink share the same frequency in TDD. uplink and downlink may interfere each other especially when neighboring cells require different rates of asymmetry. Thus, time slot allocation for tells is an important issue in TDD. In this paper. we propose a genetic algorithm based time slot allocation scheme which maximizes the residual system capacity. The proposed scheme allows that each cell employ different level of uplink/downlink asymmetry and satisfies the interference requirement.

  • PDF