• Title/Summary/Keyword: Down-mixing

Search Result 174, Processing Time 0.025 seconds

Study on mixing characteristics of T-type micro channel (미소 T 채널의 혼합 특성에 관한 연구)

  • Lee, Sang-Hyun;Ahn, Cheol-O;Seo, In-Soo;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2495-2500
    • /
    • 2008
  • We simulated the mixing characteristics in micro T-channel using Lattice Boltzmann Method. We studied the relation a mixing length and pressure-drop due to inlet and outlet ration in Reynolds number 0.5, Peclet number 500 and Schmidt 1000. The ratio of a down-inlet to up-inlet was $0.5{\sim}1.5$ times, up-inlet to outlet was $1{\sim}3$ times and outlet length was 250 times to up-inlet. The mixing length decrease linearly as outlet ratio decreased, and pressure-drip increase non-linearly. Initial stage of micro channel mixture was fast by down-inlet ratio, however, the mixing length is not influence.

  • PDF

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

A Study on the Improvement for Mixing Conditions of Foundry Sand by Orthogonal Array (직교표에 의한 주물사 배합조건의 개선)

  • 이상도;권영일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.4 no.5
    • /
    • pp.1-10
    • /
    • 1981
  • The purpose of this study is to cut down cost of production and improve the productivity of industry through quality improvement of castings and reduction of defectives by applying the experimental design to the foundry sand mixing operation done at molding department in the foundry. Among the related foundry sand mixing factors which have an effect on casting the experiment of which factors have a dominant effect on quality improvement was performed between two different levels by means of "$2^n$ type orthogonal array." The results cail be summarized as follows ; (1) The optimum conditions per each foundry sand mixing between two different levels proved to be such as $A_2$(used sand) : 24 unit (172.8kg), $B_2$(unused sand ) : 2 unit (15.0kg), $C_2$(binder) : 2.5 unit (4.4kg). $D_2$(addition agent) : 1 unit(1.4kg) and $F_1$(moisture) : 7.4%(14.6kg). (2) As a result of the application of experimental design, the fraction defective during the foundry sand mixing operation turned out to be reduced front 6.6% to 2.04%. (3) For the purpose of cost-down, It was found that the optimum level decision of foundry sand mixing for various castings is required to be made by means of experimental design.al design.

  • PDF

Sludge Transportation by the Submerged Barrier (수중격벽을 이용한 슬러지이송)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.857-865
    • /
    • 2006
  • The submerged barrier, employed in a reactor, divided a reactor into sludge settling zone and mixing zone according to flow type. In spite of mixing in the mixing zone, the lower part of sludge settling zone than the top of barrier was in a steady flow due to the barrier, which prevented the turbulent flow, produced from the mixing zone, from being diffused into the sludge settling zone. Therefore, the sludges in the mixing zone flowed backward over the barrier into the upper part of the sludge settling zone by turbulent flow and settled down in the sludge settling zone by the force of gravity. When barrier/water level ratio was 0.5, most sludges almost did not settle down in tile sludge settling zone because the sludges were directly affected by the turbulent flow, generated from mixer in the mixing zone. At 0.63 of barrier/water level ratio, sludge in the middle part of sludge settling zone rocked from side to side weakly. And sludge in the lower part became piled up on the bottom over this ratio. After 10minutes of sludge settling, the lower part of sludge settling zone was over 5000mg/L of sludge concentration although intial sludge concentration was 2300mg/L. By using the submerged barrier and the flow types, it could transfer sludge from this to that.

Analysis of Ventilation Performance Using a Model Chamber

  • Kang Tae-Wook;Chang Tae-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.736-743
    • /
    • 2005
  • In this study, three different types of mechanical ventilation systems are compared based on their ventilation characteristics: tracer gas concentration decay characteristics, and ventilation effectiveness by calculating actual ventilation air flow rate. The experiments are performed by using a step-down method for measuring tracer gas. $CO_{2}$ gas, concentration in the model chamber. Application of a mixing factor, k, was used and measured values ranged from 0.68 to 0.77. The Type 2 ventilation system was found to have the highest ventilation effectiveness rather than the Types 1 and 3.

Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks (LNG 저장탱크 종합 열유동 해석프로그램 개발)

  • Kim, Ho-Yeon;Choi, Sung-Hee;Lee, Jung-Hwan;Bak, Young;Ha, Jong-Mann;Joo, Sang-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.683-688
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^{3}$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation mdoes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks, Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study performed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

A Study on the Coolant Mixing Phenomena in the Reactor Lower Plenum

  • Park, Yong-Seog;Park, Goon-Cherl;Um, Kil-Sup
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.186-195
    • /
    • 1997
  • When asymmetric thermal-hydraulic conditions occur between cold legs, the core inlet temperature will be nonuniform if the coolant is not mixed perfectly in the lower plenum. These uneven core inlet conditions may induce the change in core power distribution. Thus realistic prediction of thermal mixing is important in such abnormal conditions. In this study, reactor internals, which are scaled down as to conserve the flow area ratio, are set up in the model of KORI Unit 1 with the scaling factor of 1/710 by volume and coolant temperatures are measured beneath the lower core plate. Based on experimental results, the ability of COMMIX-1B code to simulate the coolant mixing phenomena in the lower plenum is estimated. The results show that complete mixing never occurs in any conditions and the mixing pattern is characterized according to the plant type.

  • PDF

Development of a Digital Down-mixer to Convert 5.1 Channel Audio Signals to Stereo Signals (5.1 채널 오디오 신호를 스테레오 신호로 변환하는 디지털 다운믹서 개발)

  • Jeon, Kwang-Sub;Cheong, Ho-Yong;Lee, Seung-Yo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1764-1770
    • /
    • 2013
  • Use of the 5.1 channel audio signals suitable for the television system is improper for the radio broadcasting system, which uses the stereo audio system. Therefore, it is necessary to develop an audio down-mixer to convert 5.1 multi-channel audio signals to stereo signals for radio broadcasting. In this paper, a development of an audio down-mixer was carried out to convert 5.1 multi-channel audio signals to stereo signals. The down-mixer which was developed can use the audio signals separated from video signals, including sound signals or individual signals provided from 3-channel AES/EBU signals including Left(L), Right(R), Left Surround(Ls), Right Surround(Rs), Center(C) and Low Frequency Effect(Lfe) sounds as mixer inputs.

A Study on Ventilation Effectiveness in the Non-isothermal Supply using Mixing and Displacement Ventilation Systems (비등온 급기조건에서 환기방식에 따른 환기효율 특성에 관한 연구)

  • 이재근;강태욱;윤석구;구재현;한정균;조민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.739-745
    • /
    • 2001
  • The objective of this research is to analyze the ventilation effectiveness in the non-isothermal air supply using mixing and displacement ventilation systems for indoor air quality control and management. In this study, a ventilation effectiveness is evaluated in a simplified model chamber using a tracer gas technique of $CO^2$ gas injected into a supply duct as a function of ventilation rates, supply/extract sites and cooling/heating air supply. The ventilation effectiveness decreased with increasing ventilation rate on the cooling and heating conditions. And the ventilation effectiveness of case 3 (down supply and upper extract) was better thant that of case 1(upper supply and upper extract) and case 2(upper supply and down extract) with the cooling supply conditions. but for the heating supply air conditions, the ventilation effectiveness of case 2 was better than that of case 3 and case 1.

  • PDF

Super-High-Speed Lightwave Demodulation using the Nonlinearities of an Avalanche Photodiode

  • Park, Young-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.273-278
    • /
    • 2002
  • Even though the modulating signal frequency of the light is too high to detect directly, the signal can be extracted by frequency conversion at the same time as the detection by means of the non-linearity of the APD. An analysis is presented for super-high-speed optical demodulation by an APD with electronic mixing. A normalized gain is defined to evaluate the performance of the frequency conversion demodulation. The nonlinear effect of the internal capacitance was included in the small signal circuit analysis. We showed theoretically and experimentally that the normalized gain is dependent on the down converted difference frequency component. In the experiment, the down converted different frequency outputs became larger than the directly detected original signal for the applied local signal of 20㏈m.