• Title/Summary/Keyword: Dowex21K XLT resin

Search Result 2, Processing Time 0.015 seconds

Selective Continuous Adsorption and Recovery for Gold-Cyanide Complex in Industrial Wastewater Using Dowex 21K XLT Resin (Dowex 21K XLT 수지를 이용한 산업폐수 내의 금-시안 착화합물의 선택적인 연속흡착 및 회수)

  • Jeon, Choong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.35-39
    • /
    • 2015
  • Continuous adsorption and recovery characteristics for gold and lead-cyanide complexes in industrial wastewater were investigated by the Dowex 21K XLT resin. The Dowex 21K XLT resin could continuously remove over 95% for gold-cyanide complex until 520 bed volumes at the 0.5 mL/min of influent flow rate, however, could not remove lead-cyanide complex at all. The 96% of gold-cyanide complex adsorbed onto Dowex 21K XLT resin could be recovered by mixed solvent with HCl and acetone (7:3 ratio) within 8 bed volumes. Also, the bed volume for gold-cyanide complex using secondly reused Dowex 21K XLT resin was maintained as the 490, therefore, continuous process using Dowex 21K XLT resin can be sufficiently applied to the industrial wastewater containing gold ions.

Desorption Characteristics for Previously Adsorbed Gold and Copper-Cyanide Complexes onto Dowex21K XLT Resin Using Mixed Solvent with HCl and Acetone (염산과 아세톤의 혼합용매를 이용한 Dowex21K XLT 수지에 흡착된 금과 구리-시안 착화합물의 탈착 특성)

  • Jeon, Choong
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.487-491
    • /
    • 2013
  • To efficiently desorb gold and copper-cyanide complexes adsorbed onto Dowex21K XLT resin, the mixed solvent with HCl and acetone which is a kind of dipolar aprotic solvent was used as a desorbing agent. The desorption efficiency for gold-cyanide complex was the highest as about 94% when the mixing ratio of HCl and acetone based on volume was the 7:3, however, the value decreased as the ratio of acetone increased. In the case of copper-cyanide complex, most of them was desorbed when the amount of HCl was relatively higher than that of acetone, however, desorption efficiency decreased as the ratio of acetone increased. The desorption efficiency for gold and copper-cyanide complexes was the 94 and 100%, respectively at the 0.6 M of HCl with the 7 (HCl) : 3 (Acetone) of mixing ratio and desorption efficiency for gold-cyanide complex not increased any more even though higher HCl concentration was used. And the desorption efficiency for gold and copper-cyanide complexes was about 100% at the S/L raio ${\leq_-}1.0$ whereas desorption efficiency for gold-cyanide complex was very low as about 20-29% at the S/L ratio > 1.0. Also, most of desorption process for gold and copper-cyanide complexes was completed within 120 min.