• Title/Summary/Keyword: Doubly oxidized barrier

Search Result 3, Processing Time 0.018 seconds

Effect of Doubly Plasma Oxidation Time on TMR Devices (이중절연층 산화공정에서 플라즈마 산화시간에 따른 터널자기저항 효과)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.127-131
    • /
    • 2002
  • We fabricated MTJ devices that have doubly oxidized tunnel barrier using plasma oxidation method to from oxidized AlO$\sub$x/ tunnel barrier. Doubly oxidation I, which sputtered 10 ${\AA}$-bottom Al layer and oxidized it with oxidation time of 10 s. Subsequent sputtering of 13 ${\AA}$-Al was performed and the metallic layer was oxidized for 50, 80 and 120 s., respectively. Doubly oxidation II, which sputtered 10 ${\AA}$-bottom Al layer and oxidized it varying oxidation time for 30∼120 s. Subsequent sputtering of 13 ${\AA}$-Al was performed and the metallic layer was oxidized for 210 sec. Double oxidation process specimen showed MR ratio of above 27% in all experiment range. Singly oxidation process. 13 ${\AA}$-Al layer and oxidized up to 210 s, showed less MR ratio and more narrow process window than those of doubly oxidation. Cross-sectional TEM images would that doubly oxidized barrowers were thinner and denser than singly oxidized ones. XPS characterization confirmed that doubly oxidation of Fe with bottom insulating layer. As a result, doubly oxidation could have superior MR ratio in process extent during long oxidation time because of preventing oxidation of bottom magnetic layer than singly oxidation.

Tunnel Magnetoresistance with Top Layer Plasma Oxidation Time in Doubly Oxidized Barrier Process (이중 절연층 공정에서 상부절연층의 산화시간에 따른 터널자기저항 특성연구)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.99-102
    • /
    • 2002
  • We fabricated TMR devices which have doubly oxidized tunnel barrier using plasma oxidation method to form homogeneously oxidized AlO tunnel barrier. We sputtered 10 $\AA$-bottom Al layer and oxidized it with oxidation time of 10 sec. Subsequent sputtering of 13 $\AA$-Al was performed and the metallic layer was oxidized for 50, 80, and 120 sec., respectively. The electrical resistance changed from 500 Ω to 2000 Ω with increase of oxidation time, while variation of MR ratio was little spreading 27∼31 % which is larger than that of TMR device of ordinary single tunnel barrier. We calculated effective barrier height and width by measuring I-V curves, from which we found the barrier height was 1.3∼1.8 eV sufficient for tunnel barrier, and the barrier width (<15.0 $\AA$) was smaller than physical thickness. Our results may be caused by insufficient oxidation of Al precursor into A1$_2$O$_3$. However, doubly oxidized tunnel barriers were superior to conventional single tunnel barrier in uniformity and density. Our results imply that we were able to improve MR ratio and tune resistance by employing doubly oxidized tunnel barrier process.