• Title/Summary/Keyword: Doubly fed induction generator wind farm

Search Result 12, Processing Time 0.068 seconds

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.

Small Signal Stability Analysis of Doubly Fed Induction Generator including SDBR

  • Shawon, Mohammad Hasanuzzaman;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • This paper presents small signal stability analysis of a doubly fed induction generator (DFIG) based wind farm including series dynamic braking resistor (SDBR) connected at the stator side. A detailed mathematical model of wind turbine, DFIG machine and converters and SDBR is presented in this paper to derive the complete dynamic equations of the studied system. Small signal stability of this system is carried out by modal and sensitivity analysis, participation factors and eigenvalue analysis. Finally, this paper presents an analysis of the dynamic behavior of DFIG based wind farm under voltage dip condition with and without SDBR.

Augmentation of Wind Farms Ride Through by DFIG-based Variable Speed Wind Generators

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.104-113
    • /
    • 2012
  • Wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage has been recovered. Doubly Fed Induction Generator (DFIG) based wind farm is gaining popularity these days because of its inherent advantages like variable speed operation and independent controllability of active and reactive power over conventional Induction Generator (IG). This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs. Simulation analysis by using PSCAD/EMTDC shows that the DFIGs can effectively stabilize the IGs and hence the entire wind farm through the proposed control scheme by providing sufficient reactive power to the system.

Control Strategies of Doubly Fed Induction Generator -Based Wind Turbines with Crowbar Activation (Crowbar 운전을 가지는 이중여자유도발전기 풍력발전시스템의 제어전략)

  • Justo, Jackson John;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.706-707
    • /
    • 2011
  • The insertion of the crowbar system in the doubly fed induction generator rotor circuit for a short period of time during grid disturbance enables a more efficient way of limiting transient rotor current and hence protecting the rotor side converter (RSC) and the DC - link capacitor. When crowbar is activated at fault occurrence and clearance time, RSC is blocked while DC -link capacitor and the grid side converter (GSC) can be controlled to provide reactive power support at the PCC and improve the voltage which helps to comply with grid codes. In this paper, control strategies for crowbar system to limit the rotor current during fault is presented with RSC and GSC controllers are modified to control PCC voltage during disturbance to enhance DFIG wind farm to comply with some strict grid codes. Model simulated on MATLAB/Simulink verify the study through simulation results presented.

  • PDF

Improved Grid Voltage Control Strategy for Wind Farms with DFIGs Connected to Distribution Networks

  • Zhang, Xueguang;Pan, Weiming;Liu, Yicheng;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.495-502
    • /
    • 2012
  • This paper presents an improved grid voltage control strategy for wind farms with doubly-fed induction generators (DFIGs) connected to distribution networks based on an analysis of the operation limits of DFIG systems. A modified reactive power limit calculation method in different operation states is proposed and a reactive power control strategy during grid voltage dips/rises is further discussed. A control strategy for compensating unbalanced grid voltage, based on DFIG systems, by injecting negative sequence current into the grid through the grid side converter (GSC) is proposed. In addition, the negative current limit of the GSC is discussed. The distribution principle of the negative sequence current among the different DFIG systems in a wind farm is also introduced. The validity of the proposed voltage control strategy is demonstrated by Matlab/Simulink simulations. It is shown that the stability of a wind farm and the power grid can be improved with the proposed strategy.

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

Flicker Mitigation in a Wind Farm by Controlling a Permanent Magnet Synchronous Generator (영구자석형 동기발전기를 이용한 풍력단지의 플리커 저감)

  • Hoan, Pham Van;Kim, Dae-Hyun;Ahn, Jin-Hong;Kim, Eel-Hwan;Oh, Seong-Bo;Kim, Ho-Chan;Kim, Se-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1163-1168
    • /
    • 2009
  • The power quality of wind energy becomes more and more important in connecting wind-farms to the grid, especially weak grid. This paper presents the simulation of a wind farm of a permanent magnet synchronous generator (PMSG) and a doubly fed induction generator (DFIG). Flicker mitigation is performed by using PMSG as a static synchronous compensator (STATCOM) to regulate the voltage at the point of common coupling (PCC). A benefit of the measure is that integrating two function of to control the active power flow and to reduce the voltage flicker in a wind farm. Simulation results show that controlling PMSG is an effective and economic measure in reducing the flicker during continuous operation of grid connected wind turbines regardless of short circuit capacity ratio, turbulence intensity and grid impedance angle.

A New Control Scheme of Wind Farm Considering P,Q References (풍력 발전단지의 출력 지령값을 고려한 계통 연계 운영 방안)

  • Choi, Jung-Hyun;Park, Jin-Woo;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1172-1173
    • /
    • 2008
  • At the moment, the control ability of wind farms is a prime research concern for the grid integration of large wind farms, due to their required active role in the power system. As more wind turbines are installed, the power from wind energy will start to replace conventional generation units and its influence on power systems cannot be neglected. Besides, because of the intermittent nature of wind the output power of wind turbines fluctuates according to wind speed variation. Especially an isolated power system with small capacity such like Jeju needs more systematic solutions and regulations(grid code). This paper presents the idea of approach for centralized operating wind farm strategy to regulate the wind farm power production to the reference power ordered by the system operator. The doubly fed induction generator(DFIG) can control active and reactive power in feasible range. So wind farm comprised of DFIG has the possibility of a controllable component in the power system. The presented wind farm control has a hierarchical structure with both a wind farm control level and a wind turbine control level.

  • PDF

Critical Short Circuit Ratio Analysis on DFIG Wind Farm with Vector Power Control and Synchronized Control

  • Hong, Min;Xin, Huanhai;Liu, Weidong;Xu, Qian;Zheng, Taiying;Gan, Deqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.320-328
    • /
    • 2016
  • The introduction of renewable energy sources into the AC grid can change and weaken the strength of the grid, which will in turn affect the stability and robustness of the doubly-fed induction generator (DFIG) wind farm. When integrated with weak grids, the DFIG wind turbine with vector power control often suffers from poor performance and robustness, while the DFIG wind turbine with synchronized control provides better stability. This paper investigates the critical short circuit ratios of DFIG wind turbine with vector power control and synchronized control, to analyze the stability boundary of the DFIG wind turbine. Frequency domain methods based on sensitivity and complementary sensitivity of transfer matrix are used to investigate the stability boundary conditions. The critical capacity of DFIG wind farm with conventional vector power control at a certain point of common coupling (PCC) is obtained and is further increased by employing synchronized control properly. The stability boundary is validated by electromagnetic transient simulation of an offshore wind farm connected to a real regional grid.

Analysis of shaft torsion of a DFIG for a wind farm collector system fault (풍력발전단지 집합 시스템 사고 시 DFIG의 Shaft Torsion 분석)

  • Yoon, Eui-Sang;Lee, Jin-Shik;Lee, Young-Gui;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • This paper analyzes the shaft torsion of a doubly-fed induction generator (DFIG) for a wind farm collector system fault. When a fault occurs, the active power of the DFIG cannot be transmitted to the grid and thus accelerates the rotation of both the blade and the rotor. Due to the different inertia of these, the angle of deviation fluctuates and the shaft torsion is occurred. This becomes much severe when the rotational speed of the blade exceeds a threshold, which activating the pitch control to reduce the mechanical power. The torque, which can be sixty times larger than that in the steady state, may destroy the shaft. The shaft torsion phenomena are simulated using the EMTP-RV simulator. The results indicate that when a wind farm collector system fault occurs, a severe shaft torsion is occurred due to the activation of the pitch control.

  • PDF