• Title/Summary/Keyword: Double-sided auction market

Search Result 3, Processing Time 0.016 seconds

Agent-based Shipment Algorithm for Capacitated Vehicle Routing Problem with Load Balancing (CVRP를 위한 에이전트 기반 Shipment 알고리듬 개발)

  • Oh, Seog-Chan;Yee, Shang-Tae;Kim, Taioun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.200-209
    • /
    • 2006
  • Load building is an important step to make the delivery supply chain efficient. We present a family of load makeup algorithms using market based control strategy, named LoadMarket, in order to build efficient loads where each load consists of a certain number of finished products having destinations. LoadMarket adopts Clark-Wright algorithm for generating initial endowment for Load Traders who cooperate to minimize either total travel distance or the variance with respect to the travel distances of loads by means of the spot market or double-sided auction market mechanism. The efficiency of the LoadMarket algorithms is illustrated using simulation based experiments.

Maximizing the Overall Satisfaction Degree of all Participants in the Market Using Real Code-based Genetic Algorithm by Optimally Locating and Sizing the Thyristor-Controlled Series Capacitor

  • Nabavi, Seyed M.H.;Hajforoosh, Somayeh;Hajforoosh, Sajad;Karimi, Ali;Khafafi, Kamran
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.493-504
    • /
    • 2011
  • The present paper presents a genetic algorithm (GA) to maximize social welfare and perform congestion management by optimally placing and sizing one Thyristor-Controlled Series Capacitor (TCSC) device in a double-sided auction market. Simulation results, with line flow constraints before and after the compensation, are compared through the Sequential Quadratic Programming SQP method, and are used to analyze the effect of TCSC on the congestion levels of modified IEEE 14-bus and 30-bus test systems. Quadratic, smooth and nonsmooth (with sine components due to valve point loading effect) generator cost curves, and quadratic smooth consumer benefit functions are considered. The main aims of the present study are the inclusion of customer benefit in the social welfare maximization and congestion management objective function, the consideration of nonsmooth generator characteristics, and the optimal locating and sizing of the TCSC using real code-based GA to guarantee fast convergence to the best solution.

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.