• Title/Summary/Keyword: Double-layer Porous Pavement

Search Result 4, Processing Time 0.016 seconds

A Study on the Field Application Porous Concrete Pavement (투수성콘크리트포장의 현장적용에 관한 연구)

  • ;Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.613-619
    • /
    • 1997
  • The present study has an objetive to define the characteristic of the Porous Concrete to be used in the resistant layers of the pavement. Up to the moment there is no material which is capable which is capable of satisfying the mechanical resistances and drainability, two characterstics which interves, and a detailled study has been carried out on the same order to obtain the porous concrete of this study. such as: Mode and time of compaction. type of cement, water/cement ratio, maxium size of aggregates, sieve test. incorporation of some additives and additions etc., among them emphasizing the use of a method of compaction vibro-compression in the laboratory with which an optimum compacting was reached, and can be obtanied on the site with a spreader rated with double tamper. With this porous concrete for this study whose dominating characteristics is the drainability jointly with a high mechanical resistance. a safe and silence firm is obtained, with can be a great diffusion in the near future, for its application on the pavements. Based on these works carried out, there was the first experience in the world of field application with 25cm of resistance layer of Porous Concrete Pavement in Salamanca, Spain.

  • PDF

Analysis of Noise Characteristics of Double and Single-layered Porous Pavement with CPX Method -National Route 1, Sejong-Si Section- (CPX방법에 의한 복층 및 단층 다공성포장의 소음특성 분석 -국도 1호선 세종시 구간-)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.55-63
    • /
    • 2020
  • Road traffic noise is a major complaint. Porous pavement (PP) has been proposed as an effective method for reducing road traffic noise, but it has not been applied much due to the lack of quantitative evaluation. In this study, the noise reduction of single-layer porous pavement (SLPP) and double-layer porous pavement (DLPP) was evaluated. The noise was measured using the CPX method, and the driving speed was measured every 10km/h from 50km/h to 80km/h. The differences in noise level between the two PPs were statistically significant. The driving speed had no significant effect on the difference in noise between the two PPs. The DLPP showed a 6.6dB(A) reduction in average and a 6.3dB(A) reduction at the 95% confidence level compared to the SLPP. Reducing noise by 5dB(A) is equivalent to reducing traffic to 1/3 or lowering the vehicle's speed to 1/2. Sensitively, it is possible to recognize a 3dB(A) and 5dB(A) difference. The DLPP and SLPP were very effective in reducing traffic noise.

Analysis of Traffic Noise for Single and Double Layered Porous Pavement with SPB Method -National Route 1, Sejong-Si Section- (SPB측정법에 의한 복층 및 단층 다공성포장의 소음분석 -국도 1호선 세종시 구간-)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.92-102
    • /
    • 2020
  • Porous pavement (PP) has attracted attention as a new alternative measure against road traffic noise. PP refers to pavement that reduces the fines in the asphalt mixture to form voids. These voids can reduce traffic accidents and friction noise. For active application, verification of the noise reduction effect is required. In this study, the noise reduction of single-layer PP(SLPP) and double layer PP(DLPP) was analyzed. First, the Sejong section was selected, and traffic noise was measured using the SPB method on the roadside. The traffic volume, speed, and mixing ratio of large vehicles were measured. As a result, the DLPP was evaluated to be 7.95 dB(A) smaller on average and 7.57dB(A) smaller at the 95% reliability level than the SLPP. The traffic volume was more influential than the speed and the mixing rate of large vehicles. As the traffic volume increased, the noise increased, but the difference in noise between the two pavements decreased gradually. The results showed that the most effective way to reduce road traffic noise is to change the road pavement rather than reduce traffic speed, restrict traffic for heavy vehicles, or reduce traffic volume.

Comparative Analysis of Noise Characteristics by Road Pavement Types as Measurement Methods (측정 방법에 따른 도로 포장 종류별 소음 특성 비교 연구)

  • Guk-Gon Song;Seok-Kyeong Bae;Woo-Young Cho;Hyun-Woo Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.47-53
    • /
    • 2024
  • This study investigates the noise reduction effects of various road pavement methods to mitigate traffic noise caused by the increasing proximity between roads and residential areas in urban environments. The noise characteristics of four types of road pavement-Dense Asphalt Concrete (DAC), Double Layer Porous Asphalt Concrete (DLPAC), Transverse Tining Concrete (TTC), and Exposed Aggregate Concrete (EAC)-were evaluated using CPX close-proximity noise and pass-by noise measurements. The CPX measurements showed that noise levels increased logarithmically with vehicle speed for all pavements. Specifically, DLPAC demonstrated higher noise levels in the low-frequency range below 800 Hz and lower noise levels in the high-frequency range, which is attributed to resonance effects within the internal pores of the pavement and the reduction of compression and expansion noise. In pass-by noise measurements, DLPAC exhibited higher low-frequency noise compared to DAC, likely due to pavement durability deterioration and the influence of external environmental noise. The results indicate that the CPX measurement method is more effective in evaluating road noise performance as it better reflects the impact of vehicle speed. However, since the study was conducted under limited site conditions, further research across various sites and conditions is necessary to enhance reliability.