• 제목/요약/키워드: Double-Suction Volute Pump

검색결과 6건 처리시간 0.018초

양흡입 펌프 내부 유동특성에 관한 수치적 연구 (Numerical analysis of flow characteristic in double suction pump)

  • 김세진;김동원;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.257-263
    • /
    • 1999
  • The flow characteristics of double suction pump are investigated by numerically Calculations are performed by using SIMPLE algorithm at the design and off-design points. Symmetric nature of flow fields in blade channels is discovered at design point, but asymmetirc effects are discovered at the off-design point. Numerical results show that the formation of secondary flow in volute of double suction pump shows different trends when compared with the case of single suction pump. Also results show that double vortices are formed in the volute cross section.

  • PDF

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

원심펌프 임펠러와 케이싱 사이의 상호 작용에 대한 연구 (A Study of Impeller-Casing Interactions in a Centrifugal Pump)

  • 정경남;박편구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.585-588
    • /
    • 2002
  • Pump casing has blockage effects on Impeller flow in a centrifugal pump such that the flow field around volute tongue has quite large change when the impeller rotates. A double suction pump is widely used in industrial world because it has lower NPSH required than a single suction pump. Thus, in this study, the interaction between impeller and volute casing has been investigated by using CFD for a double-suction centrifugal pump. Quasi-steady method and full pump model has been employed for the numerical calculation.

  • PDF

자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구 (A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction)

  • 허형석;박경석;이기수;원종필
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

진동응답 측정에 의한 이중 벌류트형 양흡입 원심펌프의 동적특성 (Dynamic Characteristics of the Double Volute Double Suction Centrifugal Pump Using Measured Vibration Data)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.500-507
    • /
    • 2000
  • Dynamic forces due to mechanical and hydraulic related causes are always exerted on operating turbomachinery such as centrifugal pumps. To ensure the safety and the reliability of the pump. the magnitudes of the vibration must be kept within an acceptable limit. The focus of this paper is on the identification of the vibration behavior and the quantitative analysis of the hydraulic excitation forces. As the structure becomes more complex finite element analysis is essential to accurately predict the vibration characteristics and the excitation forces, This paper presents an experimental and analytical technique to find and solve to vibration problems in double volute double suction centrifugal pump. Measured vibration data due to the dynamic forces are presented and individual causes are identified, finally excitation forces of the pump are inversely estimated at each frequency on operating conditions.

  • PDF

전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구 (A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump)

  • 최복록;박진무;김광은
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.