• 제목/요약/키워드: Double-Lorentz

검색결과 10건 처리시간 0.022초

DGS를 이용한 주파수 가변 DL-CRLH 전송선로 (A Frequency Adjustable Double Lorentz CRLH Transmission Line using DGS)

  • 임종식;이재훈;이준;정용채;한상민;안달
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1429-1435
    • /
    • 2010
  • In this paper, a double lorentz composite right left handed(DL-CRLH) transmission line is designed using defected ground structure (DGS) and varactor diodes. Previously, the diode has been adopted only selectively for one of parallel or series resonators, and the balanced frequency as well as triple band frequencies were fixed. However in the proposed DL-CRLH transmission line, the balanced frequency, where the resonant frequencies of the series-connected parallel resonator and shunt-connected series resonator are the same, is adjustable. In addition, the triple band frequencies are controlled, too. The measured balanced frequency varies between 3.42~4.8GHz according to the controlled bias voltage. Under the same bias condition for the balanced frequency, the adjusted frequencies are 2.22~2.77GHz, 3.7~5.2GHz, 7.32~8.23GHz, 3.42~4.8GHz, and 4.44~5.92GHz for the conditions that ${\beta}d=+0.5{\pi}$, $-0.5{\pi}$, 2nd $+0.5{\pi}$, ${\omega}_{\infty}$, and ${\omega}_o$, respectively.

10 MW급 초전도 풍력발전기 계자코일 전자장 해석 (Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines)

  • 김지형;박사일;김호민
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

Metamaterial 기판에 의한 평행평판 공진 및 임피던스 특성 (Characteristics of the Resonance and Impedance of Parallel Plates due to the Embedded Metamaterial Substrate)

  • 강승택
    • 대한전자공학회논문지TC
    • /
    • 제45권8호
    • /
    • pp.41-46
    • /
    • 2008
  • 본 논문에서는 금속 평행평판에 일반 유전체 기판인 FR4 대신 Metamaterial을 삽입할 경우에 발생할 수 있는 전자기 공진 특성과 임피던스 변화에 대하여 연구하였다. 기판을 DPS는 물론 Metamateral인 ENG, MNG, DNG 형으로 나눠, 투자율 함수를 위해 SRR 형식의 Lorentz 모델과, 유전율 함수를 위해 금속선 주기 배열 형식의 Drude 모델을 정확한 계산이 가능한 Full-wave 모드해석기법에 반영하여 평행평판이 가지는 공진모드들과 임피던스의 변화양상을 관측하였다. 관측을 통해 전자장비의 품질을 저하시키는 평행평판의 불요공진모드 억제를 위한 기판설계 가이드라인을 수립할 수 있었다.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (II) - 바이어스 자속 공유형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (II) - with Coupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1567-1573
    • /
    • 2005
  • This paper introduces a new active magnetic bearing(AMB) that can provide both radial and axial control functions in one bearing unit without axial disk. It has a structure of double four-pole AMB or a four-pole AMB where each core is split into two axially. The cores have two kinds of coil winding; they independently generate fluxes on the planes perpendicular or parallel to the shaft. For the radial control action, it works just like a conventional four-pole AMB. Meanwhile, for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. In this paper, the proposed structure, principle, and design process based on magnetic flux analysis are introduced, and its feasibility is experimentally verified by using a simple PD control algorithm with a feedforward loop to compensate the coupled flux effect.

Contact Parameter Computation and Analysis of Air Circuit Breaker with Permanent Magnet Actuator

  • Fang, Shuhua;Lin, Heyun;Ho, S.L.;Wang, Xianbing;Jin, Ping;Huang, Yunkai;Yang, Shiyou
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.595-602
    • /
    • 2013
  • An air circuit breaker (ACB) with novel double-breaker contact and permanent magnet actuator (PMA) is presented. Three-dimensional (3-D) finite element method (FEM) is employed to compute the electro-dynamic repulsion forces, including the Holm force and Lorentz force, which are acting on the static and movable contacts. The electro-dynamic repulsion forces of different contact pieces are computed, illustrating there is an optimal number of contact pieces for the ACB being studied. The electro-dynamic repulsion force of each contact, which varies from the outer position to the inner position, is also computed. Finally, the contacts of the double-breaker are manufactured according to the analyzed results to validate the simulations.

NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.701-711
    • /
    • 2018
  • Herein, the thermo-magneto-elastic wave dispersion answers of functionally graded (FG) double-nanobeam systems (DNBSs) are surveyed implementing a nonlocal strain gradient theory (NSGT). The kinematic relations are derived employing the classical beam theory. Also, scale influences are covered precisely in the framework of NSGT. Moreover, Mori-Tanaka homogenization model is introduced in order to obtain the effective material properties of FG nanobeams. Meanwhile, effects of external forces such as thermal and Lorentz forces are included in this research. Also, based upon the Hamilton's principle, the Euler-Lagrange equations are developed; afterwards, these equations are incorporated with those of NSGT to reach the nonlocal governing equations of FG-DNBSs. Furthermore, according to an analytical approach, the governing equations are solved to obtain the wave frequencies and phase velocities of FG-DNBSs. At the end, some illustrations are rendered to clarify the influences of a wide range of involved parameters.

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

금을 도우핑한 이중 주입 자기 센서 (Gold-Doped Double Injection Magnetic Sensor)

  • 민남기;이성재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1248-1251
    • /
    • 1995
  • This paper reports some results of an experimental investigation of planar double injection magnetic sensors. The threshold voltage proved to be very sensitive to an applied magnetic field. The magnitude and direction of the threshold voltage variation depends on the field strength and its orientation with respect to the conduction chennel. The positively-directed field pushes the carriers into the bulk causing an increase in the threhold voltage. These results seem to agree with a path modulation due to Lorentz force. The application of a negative field causes a negative variation, which is dependent on the surface recombination velocity of the silicon-$SiO_2$ interface.

  • PDF

Isolation Circuits Based on Metamaterial Transmission Lines for Multiplexers(Invited Paper)

  • Lee, Hanseung;Itoh, Tatsuo
    • Journal of electromagnetic engineering and science
    • /
    • 제13권3호
    • /
    • pp.141-150
    • /
    • 2013
  • Multiplexers based on isolation circuits made of metamaterial lines are proposed and studied. The new approach provides unique advantageous features beneficial to system designer. For instance, there is no need to modify the filters used in multiplexers. Also, the design process is straightforward. In this paper, two types of multiplexers based on metamaterial isolation circuits are presented, and their operation concepts are explained. Also, theories and design process of isolation circuits are presented to help readers design and fabricate proposed multiplexers. For verifying the concepts, two types of triplexers and two types of quadruplexers are designed and fabricated. All filters used in the multiplexers are commercial surface acoustic wave filters. The measured results are well matched with the simulation results.

이격 형광체 구조가 적용된 백색 LED 광원의 온도변화에 따른 발광 특성 분석 (Effect of Temperature on the Luminous Properties of Remote-Phosphor White Light-Emitting Diodes)

  • 최민혁;이헌재;고재현
    • 한국광학회지
    • /
    • 제25권5호
    • /
    • pp.254-261
    • /
    • 2014
  • 본 논문에서는 일반적인 코팅형 형광체와 이격 형광체 등 두 가지의 형광체 구조가 적용된 백색 LED를 제작한 후 온도변화에 따라 각 백색 LED의 발광 특성이 어떻게 변하는지 측정, 비교하였다. 상온에서 80oC 사이의 구간에서 측정된 두 백색 LED의 발광 스펙트럼을 분석하기 위해 Gaussian Lorentz-cross product 함수와 Asymmectic double sigmoidal 함수를 각각 청색 피크와 황색 피크의 곡선맞춤에 활용하였다. 이로부터 각 피크의 중심파장과 진폭, 반치폭 및 비대칭성을 온도의 함수로 구할 수 있었다. 온도에 따른 휘도와 색좌표를 측정한 결과 이격형광체 구조의 백색 LED의 온도에 따른 휘도저하율 및 색좌표 변화율이 훨씬 적었다. 이는 청색 LED 칩과 형광체가 분리됨에 따라 형광체의 온도가 일반 형광체 도포형 LED의 경우에 비해 낮아져서 효율이 상승했고 아울러 형광체에서 발생한 빛의 칩에 의한 흡수가 감소했기 때문인 것으로 해석된다.