• Title/Summary/Keyword: Double-FBG sensors

Search Result 2, Processing Time 0.056 seconds

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.

Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes

  • Shin, Soobong;Lee, Sun-Ung;Kim, Yuhee;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.229-245
    • /
    • 2012
  • Bridge vibration displacements have been directly measured by LVDTs (Linear Variable Differential Transformers) or laser equipment and have also been indirectly estimated by an algorithm of integrating measured acceleration. However, LVDT measurement cannot be applied for a bridge crossing over a river or channel and the laser technique cannot be applied when the weather condition is poor. Also, double integration of accelerations may cause serious numerical deviation if the initial condition or a regression process is not carefully controlled. This paper presents an algorithm of estimating bridge vibration displacements using vibration strains measured by FBG (Fiber Bragg Grating) sensors and theoretical mode shapes of a simply supported beam. Since theoretically defined mode shapes are applied, even high modes can be used regardless of the quality of the measured data. In the proposed algorithm, the number of theoretical modes is limited by the number of sensors used for a field test to prevent a mathematical rank deficiency from occurring in computing vibration displacements.89The proposed algorithm has been applied to various types of bridges and its efficacy has been verified. The closeness of the estimated vibration displacements to measured ones has been evaluated by computing the correlation coefficient and by comparing FRFs (Frequency Response Functions) and the maximum displacements.