• 제목/요약/키워드: Double stem-loop

검색결과 3건 처리시간 0.015초

PKR인산화효소 억제인자인 이중선RNA결합단백질 (RBF)의 RNA결합특이성 (RNA Binding Specificities of Double-Stranded RNA Binding Protein (RBF) as an Inhibitor of PRK Kinase)

  • 박희성;최장원
    • 생명과학회지
    • /
    • 제6권4호
    • /
    • pp.234-240
    • /
    • 1996
  • PKR인산화효소의 억제인자로서 밝혀진 이중선RNA결합단백질 (RBF)의 RNA결합특이성을 정기영도에 의한 RNA 이동변화실험과 여과막결합도실험에 의해 측정하였다. RBF는 바이러스RNA나 stem/loop구조를 지니는 합성 RNA들에 대한 다양한 친화력을 지니는 것으로 나타났으며 충분한 GC가 포함된 11염기쌍으로 이루어진 RNA stem helix RBF가 결합하기 위한 최소한의 RNA구조로 제시되고 있다. 자연적 RNA구조에 대한 RBF의 결합은 poly(I) : poly(C)의 첨가에 의해 반전되었으며 E. coli 5S RNA경우는 효과를 거의 나타내지 않았다.

  • PDF

Symmetry Region at Beginning of Transcript Inhibits Expression of Escherichia coli aeg-46.5 Operon

  • Lee, Seung-Hwa;Lee, Sang-Ho;Sung, Ha-Chin;Kim, Joon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.436-442
    • /
    • 1999
  • The aeg-46.5 operon of Escherichia coli is induced by nitrate and anaerobic conditions. Positive regulators Fnr and NarP, and a negative regulator NarL control the expression of the aeg-46.5. It has two symmetry regions [6], one of which is located between +37 and +56 bp from the 5'end of the anaerobic transcription initiation site. In this study, mutagenized symmetry regions were transferred from plasmid to chromosome by homologous recombination to evaluate the mutation as a single copy in the fnr, narL, narP, and narL-narP double mutant background. The expressions of the aeg-46.5 operon with these mutations indicated that the control was not through the possible stem-loop structure. Whether there is a protein that mediates this control remains to be seen. The results from the narL-narP double mutant indicated that the anaerobic Fill induction was independent of NarL repression.

  • PDF

Effects of different target sites on antisense RNA-mediated regulation of gene expression

  • Park, Hongmarn;Yoon, Yeongseong;Suk, Shinae;Lee, Ji Young;Lee, Younghoon
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.619-624
    • /
    • 2014
  • Antisense RNA is a type of noncoding RNA (ncRNA) that binds to complementary mRNA sequences and induces gene repression by inhibiting translation or degrading mRNA. Recently, several small ncRNAs (sRNAs) have been identified in Escherichia coli that act as antisense RNA mainly via base pairing with mRNA. The base pairing predominantly leads to gene repression, and in some cases, gene activation. In the current study, we examined how the location of target sites affects sRNA-mediated gene regulation. An efficient antisense RNA expression system was developed, and the effects of antisense RNAs on various target sites in a model mRNA were examined. The target sites of antisense RNAs suppressing gene expression were identified, not only in the translation initiation region (TIR) of mRNA, but also at the junction between the coding region and 3' untranslated region. Surprisingly, an antisense RNA recognizing the upstream region of TIR enhanced gene expression through increasing mRNA stability.