• Title/Summary/Keyword: Double stator

Search Result 88, Processing Time 0.023 seconds

Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network (계통 연계형 권선형 유도발전기의 동작특성 연구)

  • Kim, Chan-Ki;Han, Sang-Yul;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.247-257
    • /
    • 2006
  • This paper shows the comparison of operating characteristics between squirrel cage induction generator and DFIG(Double Fed Induction Generator). Because squirrel cage induction generator consume the reactive power due to magnetizing reactance, the capacitor is need to compensate the reactive power. Otherwise, two back-to-back PWM voltage-fed inverters connected between the stator and the rotor allow sub/super synchronous operation with low distortion currents. In this paper, the response characteristics of squirrel cage induction generator and DFIG, were analyzed and investigated using PSCAD/EMTDC.

Analysis of Mechanical Fixation Made of Aluminum Alloy in an Axial Flux Permanent Magnet Machine

  • Lee, Jiyoung;Park, Byounggung;Koo, Daehyun
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.309-313
    • /
    • 2014
  • This paper presents an eddy current loss analysis of a Mechanical Fixation (MF) made of 6061 aluminum alloy, which is used for an NS type double-rotor single-stator axial flux permanent magnet machine. The prototype MF made of aluminum alloy shows good mechanical performance, but poor electro-magnetic performance, since the machine's efficiency can decrease because of eddy current loss in the MF. In order to prevent efficiency decrease, a modification of the MF structure is also introduced. Three-dimensional finite element analysis (FEA) is used for magnetic field analysis, and eddy current losses are computed. The analysis results are compared to, and verified by the test results.

Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network (계통 연계형 권선형 유도발전기의 동작특성 연구)

  • Kim Chan-Ki;Park Jong-Kwang;Choi Young-Do;Lim Seong-Joo;Moon Hyoung-Bae
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.323-326
    • /
    • 2006
  • This paper shows the comparison of operating characteristics between squirrel cage induction generator and DFIG(Double Fed Induction Generator). Because squirrel cage induction generator consume the reactive power due to magnetizing reactance, the capacitor is need to compensate the reactive power. Otherwise, two back-to-back PWM voltage-fed inverters connected between the stator and the rotor allow sub/super synchronous operation with low distortion currents. In this paper, the response characteristics of squirrel cage induction generator and DFIG, were analyzed and investigated using PSCAD/EMTDC.

  • PDF

A Study on the 2-Dimensional Flux Distribution Analysis of a Double Sided Linear Induction Motor (양축식 선형유도 전동기의 2차원 자속분포 해석에 관한 연구)

  • 임달호;김학린;조윤현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.29-35
    • /
    • 1990
  • This paper proposes a tow-dimensional magnetic flux distribution analysis of the double-sided linear induction motor(DLIM). Both the longitudinal end-effect and the transverse edge-effect, which are due to the finite length and width of the primary stator, are considered. Also each force which is due to the variation of slip frequency was computed to show the fact that the thrust force of DLIM is dependent on both the longitudinal end-effect and the transverse edge-effect. To ascertain the propriety of this analysis, the simulated results of the magnetic flux density distribution in the airgap are compared to the experimental data.

  • PDF

A study with multi-winding of double excited type LDM (양측 여자형 LDM의 다권선화에 관한 연구)

  • Lee, S.M.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.290-293
    • /
    • 2000
  • In this paper, by designing the width of the stator coil, double sided excitation LDM with multi-separated winding which is possible to obtain the constant thrust force is proposed. Using Permeance method, equvalent magnetic circuit method, Maxwell 2D, which is the magnetic field analysis package, we were analyzed and proved the validity of design process, also the characteristics of LDM according to magnet vs. coil width ratio of LDM was almost in accord with the experiment results.

  • PDF

Extraction of Design Parameters through Electromagnetic and Dynamic Analysis of Slotless Double-side PMLSM system (양측식 영구자석 가동형 슬롯리스 직선 동기전동기의 전자기 특성 및 동특성 해석에 의한 설계정수 도출)

  • Jang, Won-Bum;Lee, Sung-Ho;Jang, Seok-Myeong;You, Dae-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2135-2144
    • /
    • 2007
  • This paper presents system design of the slotless double-side Permanent Magnet Linear Synchronous Machine system (PMLSM) through magnetic field analysis and dynamic modeling. In our analysis, 2-D analytical treatments based on the magnetic vector potential were adopted to predict magnetic field with space harmonics by PM mover magnetization and stator winding current. From these, the design parameters such as inductance, Back-emf, and thrust are estimated. And, the electrical dynamic modeling including synchronous speed is completed by calculation of a DC link voltage in effort to obtain the accurate mechanical power from Space Vector Pulse Width Modulation(SVPWM). Therefore, the system design of PMLSM is performed from estimation of design parameters according to PM size and coil turns in magnetic field and from calculation of a DC link voltage to satisfy base speed and base thrust represented as the maximum output power in dynamic modeling. The estimated values from the analysis are verified by the finite element method and experimental results.

United Electromagnetic Characteristics and Online Monitoring Method of Static Air-gap Eccentricity of Turbo-Generator

  • Tang, Gui-Ji;Ke, Meng-Qiang;He, Yu-Ling;Wang, Fa-Lin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1614-1627
    • /
    • 2016
  • The purpose of this paper is to investigate the united Electromagnetic characteristics for the effective monitoring on the static air-gap eccentricity (SAGE) of turbo-generator. Different from other studies, this paper not only studies on the unbalanced magnetic pull (UMP) and the vibration characteristics of the stator and the rotor, but also investigates the harmonic features of the magnetic flux density and the circulating current inside the parallel branches (CCPB). The theoretical calculation, together with the finite-element-method (FEM) simulation and the experiment verification, is taken for a SDF-9 type non-salient generator. It is shown that, when SAGE occurs, apparent double-frequency UMP and vibrations will be produced both on the stator and the rotor, while the CCPB will have an obvious increment at the $1^{st}$ harmonic component. In addition, the amplitude of the magnetic flux density will be of cosine distribution in the circumferential position of the air-gap, while in normal condition it is a constant. Moreover, the pass-band amplitude, together with the $1^{st}$ harmonic of the magnetic flux density, will be enlarged as well. These united electromagnetic characteristics can be used as the diagnosis and monitoring criterion for SAGE.

Cogging Torque Reduction in AFPM Generator Design for Small Wind Turbines (소형 풍력발전기용 AFPM 발전기 코깅토크 저감 설계)

  • Chung, Dae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1820-1827
    • /
    • 2012
  • This paper is to present a new method of cogging torque reduction for axial flux PM machines of multiple rotor surface mounted magnets. In order to start softly and to run a power generator even the case of weak wind power, reduction of cogging torque is one of the most important issues for a small wind turbine, Cogging torque is an inherent characteristic of PM machines and is caused by the geometry shape of the machine. Several methods have been already applied for reducing the cogging torque of conventional radial flux PM machines. Even though some of these techniques can be also applied to axial flux machines, manufacturing cost is especially higher due to the unique construction of the axial flux machine stator. Consequently, a simpler and low cost method is proposed to apply on axial flux PM machines. This new method is actually applied to a generator of 1.0kW, 16-poles axial flux surface magnet disc type machine with double-rotor-single-stator for small wind turbine. Design optimization of the adjacent magnet pole-arc which results in minimum cogging torque as well as assessment of the effect on the maximum available torque using 3D Finite Element Analysis (FEA) is investigated in this design. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.

Improve of Efficiency of Multi D.O.F Spherical Motor Through the Reduction of Eddy Current Loss (다자유도 구형 구동 모터의 와전류 손실 저감을 통한 효율 향상 연구)

  • Hong, Kyung-Pyo;Kim, Yong;Jang, Ik-Sang;Lee, Ho-Joon;Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • The Multi D.O.F spherical motor can drive rotating as well as tilting three degree of freedom with one motor. Existing three degree of freedom to drive with three motors that are connected by gears and belts, that will be too large size and big loss at gears and belts. So Reducing system size and improving efficient is using the Multi D.O.F spherical motor in three degree of freedom systems. For this reason, efficiency of Multi D.O.F spherical motor is one of the important performance indiccators. In this paper presented that how to improve the efficiency of the Multi D.O.F spherical motor. The fist of method is using the stator iron core's material with high permeability and resistivity for reducing the eddy current loss. However, it was the disadvatages of motor-making and economic. So author propose the resonable method of reducing the eddy current loss in the stator iron core. That is using the rotor with double-air gap.

Characteristics Analysis of Double Side Excitation Type Multi-separated LDM (양측 여자형 다분할 LDM의 특성해석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.64-72
    • /
    • 2002
  • The use of linear DC motor is spreaded according to industrial development. This study was objected to study the analysis of double side excitation LDM with moving magnet type. In this LDM structure, the mover made use of permanent magnet with six pieces so as to large thrust, the stator was bedded for the multi separated type winding to repress the i개n saturation. Also, double side excitation winding is suppressed to thrust ripple with stratification to zigzag type and designed to production for static thrust. Then it is important to ratio of permanent magnet to winding width at multi separate, this paper analyzed to separate to three pieces of 1:1, 1:0.84 and 1:0.5 with width ratio. The analysis method calculated the parameter useful for permeance and magnetic resistance more than FEM of complicated numerical value analysis. Through manufactured experiment system, measurement result of thrust was almost acquired to constant thrust for all displacement.