• Title/Summary/Keyword: Double pancake HTS windings

Search Result 36, Processing Time 0.02 seconds

Effects of Air Gap on HTS Magnet Consisting of Double Pancake Windings

  • Ku, Myung-Hwan;Kang, Myung-Hun;Kim, Young-Min;Lee, Hee-Joon;Cha, Guee-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.33-36
    • /
    • 2009
  • An air gap between the pancake windings was provided in this paper to increase the central magnetic field of a high temperature superconducting (HTS) magnet consisting of pancake windings. Unlike the LTS magnet, providing an air gap between the pancake windings increases the central magnetic field of a HTS magnet. Furthermore, the uniformity of the magnetic field near the center of the magnet increased because the pancake windings spread out in wider area. Effects of the air gap on the central magnetic field of an HTS magnet was described in this paper, Calculation of the critical current was carried out by using E-J relation of the HTS wire and the optimization technique was adopted to obtain the appropriate critical current which could maximize the central magnetic field. Pancake windings with BSCCO-2223 HTS wire were wound on glass epoxy bobbin. 6 double pancake windings with 200 turns were used to construct a HTS magnet. Characteristics of the HTS magnet including the central magnetic field and the uniformity of the magnetic field were measured and compared with the results of calculation.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

Development and Characteristic Analysis of a 10kVA HTS Power Transformer (10kVA고온초전도변압기의 특성해석 및 제작)

  • Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Choe, Gyeong-Dal;Ryu, Gyeong-U;Han, Song-Yeop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.37-43
    • /
    • 2000
  • This paper describes the construction and test results of a 10kVA single phase HTS transformer. Double pancake windings with BSCCO-2223 HTS tape and G10-FRP cryostat with room temperature bore are used in the transformer. Two double pancake windings are connected in series to provide 188 turns and other two double pancake windings are connected in parallel to conduct the secondary current of 45.4[A]. Coefficients of the constructed transformer are obtained using the fundamental teats of the transformer. According to the test results, larger leakage reactance than expected is observed due to the bulky core which surrounds the sryostat.

  • PDF

Test and Characteristic Analysis of an HTS Power Transformer (고온초전도변압기의 특성해석 및 시험)

  • Lee, H.J.;Cha, G.S.;Lee, J.K.;Choi, K.D.;Ryu, K.W.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.321-323
    • /
    • 2000
  • This paper describes the construction and test results of a 10kVA single phase HTS transformer. Double pancake windings with BSCCO-2223 HTS tape and GFRP cryostat with room temperature bore are used in the transformer. Two double pancake windings are connected in series to provide 184 turns and two double pancake windings are connected in parallel to conduct the secondary current of 45.4A. Coefficients of the constructed transformer are obtained using the fundamental tests of the transformer. According to the test results, larger leakage reactance than expected is observed due to the bulky core which surrounded the cryostat.

  • PDF

Analysis of AC Losses in HIS Transformer with Double Pancake Windings (초전도 변압기 교류 손실 해석)

  • Kim Jong-Tae;Kim Woo-Seok;Kim Sung-Hoon;Choi Kyeong-Dal;Joo Hyeong-Gil;Hong Gye-Won;Han Jin-Ho;Lee Hee-Gyoun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.

Design of a 1 MVA HTS Transformer with Double Pancake Windings

  • Kim, Woo-Seok;Park, Kyeong-Dal;Joo, Hyeong-Gil;Han, Jin-Ho;Hong, Gye-Won;Park, Jungho;Heesuck Song;Kim, Sung-Hoon;Hahn, Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.48-51
    • /
    • 2003
  • A 1 MVA transformer with BSCCO-2223 high Tc superconducting (HTS) tapes was designed. The rated voltages of each sides of the transformer are 22.0 kV and 6.6 kV respectively. Double pancake HTS windings, which have advantages of insulations and distribution of high voltage, were adopted. Four HTS tapes were wound in parallel fer the windings of low voltage side. Each winding was composed of several double pancake windings made of four parallel conductors were transposed in order to distribute the currents equally in each conductor. A core of the transformer was designed as a shell type core made of laminated silicon steel plate and the core is separated with the windings by a cryostat with a room temperature bore. The operating temperature of HTS windings will be 65K with liquid nitrogen, and a cooling system using a cryocooler was proposed and designed conceptually. This HTS transformer is going to be manufactured in near future based on the design parameters presented in this paper.

The Characteristics Analysis of a HTS Transformer (고온초전도변압기의 특성해석)

  • Lee, Hui-Jun;Cha, Gwi-Su;Lee, Yong-Uk;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.27-31
    • /
    • 2000
  • This paper presents the performance evaluation of an HTS transformer. Numerical calculation by finite element method was used to evaluate the performance. BSCCO-2223 HTS tapes and double pancake winding were adopted in this design. Four double pancake windings were used in total. Among them two windings were connected in series for high voltage winding and two windings are connected in parallel for low voltage winding. Propertied of various type of the winding arrangement were examined. Characteristics of the transformer during the transient which was caused by sudden short were simulated. The current limiting effect, temperature rise and resistance growth of the superconducting winding were shown.

  • PDF

10kVA high $T_c$ Superconducting Power Transformer with Double Pancake Windings (더블팬케이크 권선형 10kVA 고온초전도 변압기)

  • Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Han, Song-Yeop;Ryu, Gyeong-U;Choe, Gyeong-Dang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • This paper presents the design and test results of a 10kVA single phase HTS transformer which is operating at 77K. Double pancake windings with BSCCO -2223 HTS tape and GFRP cryostat with room temperature bore are used in the transformer. Four double pan cake windings were used in pancake windings are connected in parallel to conduct the secondary current of 45.4A. the rated voltages of each winding are 440/220V. Numerical calculation using Finite Element Method was used to evaluated the performance of each arrangement. Considering the magnetizing reactance, leakage reactance, electrical insulation and the circulating current in low voltage winding which had two windings in parallel, HLLH arrangement was finally chosen. Estimation of the AC loss, magnetizing loss and self field loss, in the design stage, where effects of perpendicular field and parallel field are considered. Room temperature bore type cryostat has been constructed and its heat loss was measured.

  • PDF

Design and Fabrication of Parallel Wounded HTS Transformer Windings with Transpositions (전위를 고려한 고온초전도 변압기용 병렬권선의 설계 및 제작)

  • 김우석;김성훈;최경달;주형길;홍계원;한진호;박정호;송희석;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.203-205
    • /
    • 2003
  • Parallel wounded windings with BSCCO-2223 HTS tape for 1MVA HTS transformer were designed and prototype windings were fabricated in double pancake type. The parallel HTS tapes were transposed between the pancakes via non-superconducting joints because it is hard to make transpositions inside the pancake windings. The prototypes were wound using copper tape with same size as BSCCO-2223 tape, which will be used in 1MVA HTS transformer. The windings will be used for high voltage test and insulation test of the transformer Parallel HTS windings are going to be fabricated and tested for current distribution in near future.

  • PDF

Magnetic Field Analysis of 1 MVA HTS Transformer Windings

  • Park, Chan-Bae;Kim, Woo-Seok;Lee, Sang-Jin;Han, Jin-Ho;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Hahn, Song-Yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.66-70
    • /
    • 2003
  • In a HTS transformer, the perpendicular component of magnetic flux density ($B_r$) applied to HTS tapes of pancake windings becomes larger than that of solenoid winding, thereby decreasing the critical current in the HTS tapes. This paper introduces several methods to reduce $B_r$ applied to the HTS tapes in the transformer with double pancake windings by changing winding arrangements and the relative permeability of flux diverters. We have conducted a winding design for a single-phase 1MVA 22.9kV/6.6kV HTS transformer. We observed a change of $B_r$ due to a variation of gap-length between the high voltage windings and the low voltage windings, reciprocal arrangement and an increase of the number of the high voltage pancake. We also observed a change of Br on the HTS tapes due to variation of the relative permeability of flux diverters placed between the high voltage winding and the low voltage winding. Finally, we have designed a 1MVA 22.9kV/6.6kV HTS transformer winding using suggested methods and calculated transformer parameters by the 3D finite element method.