• Title/Summary/Keyword: Double melting

Search Result 52, Processing Time 0.021 seconds

A Study on the Design of Stearic Acid-Based Solid Lipid Nanoparticles for the Improvement of Artificial Skin Tissue Transmittance of Serine (Serine 의 인공피부조직 투과 개선을 위한 Stearic Acid 기반 고형지질나노입자의 설계 연구)

  • Yeo, Sooho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.179-184
    • /
    • 2021
  • Stratum corneum known as a skin barrier, which maintains water in skin, is the outer layer of the skin. Natural moisturizing factors (NMF) are one of the constituents in stratum corneum and amino acids are the highest components among NMF. In this study, we designed stearic acid-based solid lipid nanoparticles (SLNs) for improved skin penetration of serine (Ser). Ser-capsulated SLN was manufactured by double-melting emulsification method. The mean particle size and zeta potential of SLNs were 256.30 ~ 416.93 nm and -17.60 ~ -35.27 mV, respectively. The higher the degree of hydrophobicity or hydrophilicity of emulsifiers, the smaller the particle size and the higher the stability and capsulation rate. In addition, skin penetration was conducted using SkinEthicTM RHE which is one of the reconstructed human epidermis models. The results of Ser penetration demonstrated that all SLNs enhanced than serine solution. The amount of enhanced Ser penetration from SLNs were approximately 4.1 ~ 6.2 times higher than that from Ser solution. Therefore, Ser-loaded SLN might be a promising drug delivery system for moisturizing formulation in cosmeceutical.

Effects of Parameters Defining the Characteristics of Raindrops in the Cloud Microphysics Parameterization on the Simulated Summer Precipitation over the Korean Peninsula (구름미세물리 모수화 방안 내 빗방울의 특성을 정의하는 매개변수가 한반도 여름철 강수 모의에 미치는 영향)

  • Ki-Byung Kim;Kwonil Kim;GyuWon Lee;Kyo-Sun Sunny Lim
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.305-317
    • /
    • 2024
  • The study examines the effects of parameters that define the characteristics of raindrops on the simulated precipitation during the summer season over Korea using the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) cloud microphysics scheme. Prescribed parameters, defining the characteristics of hydrometeors in the WDM6 scheme such as aR, bR, and fR in the fall velocity (VR) - diameter (DR) relationship and shape parameter (𝜇R) in the number concentration (NR) - DR relationship, presents different values compared to the observed data from Two-Dimensional Video Disdrometer (2DVD) at Boseong standard meteorological observatory during 2018~2019. Three experiments were designed for the heavy rainfall event on August 8, 2022 using WRF version 4.3. These include the control (CNTL) experiment with original parameters in the WDM6 scheme; the MUR experiment, adopting the 50th percentile observation value for 𝜇R; and the MEDI experiment, which uses the same 𝜇R as MUR, but also includes fitted values for aR, bR, and fR from the 50th percentile of the observed VR - DR relationship. Both sensitivity experiments show improved precipitation simulation compared to the CNTL by reducing the bias and increasing the probability of detection and equitable threat scores. In these experiments, the raindrop mixing ratio increases and its number concentration decreases in the lower atmosphere. The microphysics budget analysis shows that the increase in the rain mixing ratio is due to enhanced source processes such as graupel melting, vapor condensation, and accretion between cloud water and rain. Our study also emphasizes that applying the solely observed 𝜇R produces more positive impact in the precipitation simulation.