• Title/Summary/Keyword: Double layered rubber

Search Result 3, Processing Time 0.034 seconds

Comparison of Shear Properties of Crumb Rubber-Bottom Ash Mixture Considering Reinforcement Types of Waste Fishing Net (폐어망 보강형식에 따른 폐타이어-저회 혼합토의 전단특성 비교)

  • Kwon, Soon-Jang;Kim, Yun-Tae;Ahn, Jae-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.47-55
    • /
    • 2012
  • This paper investigates the shear properties of crumb rubber-bottom ash mixture reinforced by waste fishing net (WFN). Mixtures used in this experiment consist of crumb rubber and bottom ash (2mm~10mm) with the same weight ratio. In this study several series of direct shear tests were carried out on the five different specimens : unreinforced mixture, reinforced mixtures with 1 or 2 single-layered WFN, reinforced mixtures with 1 or 2 double-layered WFN. The experimental results indicated that the shear properties of reinforced crumb rubber-bottom ash mixture were strongly influenced by reinforcing layer of WFN. It was found that the shear strength and internal friction angle of the mixtures increased with an increase in reinforcing layer of WFN due to interlocking effect and friction between mixture and WFN.

Thermal and Mechanical Properties of Flame Retardant ABS Nanocomposites Containing Organo-Modified Layered Double Hydoxide (유기변성 LDH를 사용한 난연 ABS 나노복합재료의 열적 및 기계적 물성)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.241-252
    • /
    • 2008
  • ZnAl-LDH(layered double hydroxide) modified with oleic acid(SO-ZnAl LDH) was synthesized and added to the flame retardant ABS compounds containing brominated epoxy resin(BER) and antimony trioxide(${Sb_2}{O_3}$). Flame retardant ABS compounds were manufactured by using a twin-screw co-rotating extruder and subsequently injection molded into several specimen for flame retardancy and mechanical properties. The XRD patterns of ABS nanocomposites showed no peaks. The thermal stability of ABS nanocomposites was enhanced by the addition of SO-ZnAl LDH as shown in TGA results. However, these nanocomposites showed no rating in the UL 94 vertical test at 1.6 mm thickness. Only ABS nanocomposites with additional BER more than 1.5 wt% showed UL 94 V0 rating. Notched Izod impact strength, tensile modulus, and elongation at break of flame retardant ABS nanocomposites increased with the proportion of So-ZnAl LDH whereas their melt index decreased.

Development of Multi-rotational Prosthetic Foot for Lower Limb Amputee (하지 절단자를 위한 다축 회전이 가능한 인공발의 개발)

  • Shin, Hyunjun;Park, Jin-Kuk;Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Shin-Ki
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • Movements of the lower limb are important for normal walking and smooth oscillation of the center of gravity. The ankle rotations such as dorsi-flexion, plantar-flexion, inversion and eversion allows the foot to accommodate to ground during level ground walking. Current below knee (B/K) prostheses are used for replacing amputated ankle, and make it possible for amputees to walk again. However, most of amputees with B/K prostheses often experience a loss of terrain adaptability as well as stability because of limited ankle rotation. This study is focused on the development of multi-rotational prosthetic foot for lower limb amputee. Our prosthesis is possible for amputees to easily walk in level ground by rotating ankle joint in sagittal plane and adapt to the abnormal terrain with ankle rotation in coronal plane. The resistance of ankle joint in the direction of dorsi/plantar-flexion can be manually regulated by hydraulic damper with controllable nozzle. Furthermore, double layered rubber induce the prosthesis adapt to irregular ground by tilting itself in direction of eversion and inversion. The experimental results highlights the potential that our prosthesis induce a normal gait for below knee amputee.