• Title/Summary/Keyword: Double layer structure

Search Result 391, Processing Time 0.035 seconds

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer (2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구)

  • 이형욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

Analysis of Bulk Concentration on Double-Layer Structure for Electrochemical Capacitors

  • Khaing, Khaing Nee Nee;Hla, Tin Tin
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.313-319
    • /
    • 2022
  • Double-layer capacitors (DLCs) are developed with high surface electrodes to achieve a high capacitance value. In the present work, the initial bulk concentration of 1 mol/m3 and 3 mol /m3 are selected to show the consequential effects on the performance of a double-layer capacitor. A 1D model of COMSOL Multiphysics has been developed to analyze the electric field and potential in cell voltage, the electric displacement field and polarization induced by the field, and energy density in a double-layer structure. The electrostatics and the electric circuit modes in COMSOL are used to simulate the electrochemical processes in the double-layer structure. The analytical analysis of a double-layer capacitor with different initial bulk concentrations is investigated by using Poisson-Nernst-Plank equations. From the simulation results, the differential capacitance changes as a function of compact layer thickness and initial bulk concentration. The energy density varies with the differential capacitance and voltage window. The values of energy density are dominated by the interaction of ions in the solution and electrode surface.

Hybrid-type stretchable interconnects with double-layered liquid metal-on-polyimide serpentine structure

  • Yim, Doo Ri;Park, Chan Woo
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.147-154
    • /
    • 2022
  • We demonstrate a new double-layer structure for stretchable interconnects, where the top surface of a serpentine polyimide support is coated with a thin eutectic gallium-indium liquid metal layer. Because the liquid metal layer is constantly fixed on the solid serpentine body in this liquid-on-solid structure, the overall stretching is accomplished by widening the solid frame itself, with little variation in the total length and cross-sectional area of the current path. Therefore, we can achieve both invariant resistance and infinite fatigue life by combining the stretchable configuration of the underlying body with the freely deformable nature of the top liquid conductor. Further, we fabricated various types of double-layer interconnects as narrow as 10 ㎛ using the roll-painting and lift-off patterning technique based on conventional photolithography and quantitatively validated their beneficial properties. The new interconnecting structure is expected to be widely used in applications requiring high-performance and high-density stretchable circuits owing to its superior reliability and capability to be monolithically integrated with thin-film devices.

A Fabrication and Characteristic Estimation of Polycrystalline Silicon Structural Layer for Micromachining (미세가공용 다결정 실리콘 구조체의 제작 및 특성 평가)

  • Kim, Hyoung-Dong;Pack, Seung-Ho;Lee, Seong-Jun;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1442-1444
    • /
    • 1995
  • In this study, we confirmed that the crystallinity and the mechanical properties of polycrystalline Silicon(poly-Si) deposited on the poly-oxide are better than those of poly-Si on the conventional sacrificial layers that is CVD oxide layer or PSG. But the etch rate of poly-oxide is poor than that of the CVD oxide layer or PSG. Therefore, to make the best use of small stress and fast etch rate, we fabricated the double oxide layer; 10%-thick poly-oxide on 90%-thick CVD oxide or PSG. To estimate structure deformation by stress, we fabricated the test structures; cantilever. bridge and ring/beam structure and estimated by SEM. As the results, all structure is expressed the deformed structure by residual stress(tensile stress) and the deformation of the structure layer on the double oxide layer is small compared with that of the structure layer on the CVD oxide layer or PSG. And, the etch rate of the double oxide layer is enhanced compared with that of the poly-oxide.

  • PDF

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Spherical Space Frame Structure with Triangular Network Pattern (삼각형 네트워크를 갖는 단층 및 복층 구형 스페이스 프레임 구조물의 좌굴특성에 관한 비교 연구)

  • 이호상;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.251-257
    • /
    • 1998
  • Spherical space frame structure with triangular network pattern, which has the various characteristics for the mechanic property, a funtional property, an aesthetic property and so on, has often been used as one of the most efficient space structures. It is expected that this type will be used widely in large-span structural roofs. But because this structure is made of network by combination of line elements there me many nodes therefore, the structure behavior is very complicated and there can be an overall collapse of structure by buckling phenomenon if the external force reaches a limitation. This kind of buckling is due to geometric shape, network pattern, the number of layer and so on, of structure. Therefore spherical space frame with triangle network pattern have attracted many designers and researchers attention all over the world. The number of layer of space frame is divided in to the simgle, double, multi layer. That is important element which is considered deeply in the beginning of structural design. The buckling characteristics of single-layer model and double-layer model for the spherical space frame structure with triangular network pattern are evaluated and the buckling loads of these types are compared with investigation their structural efficiency in this study.

  • PDF

Structure and Optical Properties of the Ca/Ag Double Layer for Transparent Cathode in TEOLED

  • Kim, Boo-Kyung;Moon, D.G.;Ahn, B.T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1071-1074
    • /
    • 2006
  • Ca/Ag double layer which is fabricated by thermal evaporation exists as the double layer of (Ca+O)/(Ag+Ca). In Ca layer, are crystalline Ca(OH)2 and amorphous Ca and in Ag layer, are crystalline Ag and amorphous Ca. And for the certain thickness of Ag, in the Ca/Ag double layer, the thicker Ca is, the higher transmittance is.

  • PDF

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

TEM Study on the HgCdTe/Anodic oxide/ZnS Interfaces (투과전자현미경에 의한 HgCdTe/양극산화막/ZnS 계면 특성에 관한 연구)

  • 정진원;김재묵;왕진석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.121-127
    • /
    • 1995
  • We have analyzed the double insulating layer consisting of anodic oxide and ZnS through TEM experiments. The use of double insulating layer for HgCdTe surface passivation is one of the promising passivation method which has been recently studied deeply and the double insulating layer is formed by the evaporation of ZnS on the top of anodic oxide layer grown in H$_{2}$O$_{2}$ electrolyte. The structure of anodic oxide layer on HgCdTe is amorphous but the structure of oxide layer after the evaporation of ZnS has been changed to micro-crystalline. The interface layer of 150.angs. thickness has been found between ZnS and anodic oxide layer and is estimated to be ZnO layer. The results of analysis on the chemical components of ZnS, the interface layer and anodic oxide layer have showed that Zn has diffused into the anodic oxide layer deeply while Hg has been significantly decreased from HgCdTe bulk to the top of oxide layer. The formation of ZnO interface layer and the change of structure of anodic oxide layer after the evaporation of ZnS are estimated to be defects or to induce the defects which might possibly affect the increase of the positive fixed charges shown in C-V measurements of HgCdTe MIS.

  • PDF

Field Application of the Concrete with the Combination of Drying Shrinkage-Reducing Superplasticizer and Double Layer Bubble Sheet (건조수축 저감형 유동화제 및 2 중 버블시트를 사용한 콘크리트의 현장적용)

  • Han, Cheon-Goo;Oh, Chi-Hyun;Shin, Jae-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.107-113
    • /
    • 2007
  • This study investigates the filed application in Daebul Free Trade Zone applying both a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double layer bubble sheet. Test results showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall. In addition, a structure applying the flowing concrete method partially presented the micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing concrete method was 28%, compared with that of conventional one. For the compressive strength of specimens, standard curing specimens indicated $3{\sim}33%$ higher value than that of specimens cured besides the field construction. The specimens containing SRS improved the strength of $2{\sim}6MPa$, which is $10{\sim}22%$ higher than that of conventional concrete.