• Title/Summary/Keyword: Double layer filter

Search Result 23, Processing Time 0.018 seconds

Multi-Pole Low Pass Filter Embedded K-Band LTCC Upconverter (다중 폴 저역 통과 여파기가 내장된 K-대역 LTCC 주파수 상향 변환기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.621-629
    • /
    • 2008
  • This paper presents a low temperature co-fire ceramics(LTCC) Upconverter for a Ka-band OBS satellite transponder in order for size reduction which is one of the most important requirement for satellite components. A S-band low-pass filter(LPF), a K-band band-pass filter(BPF), and an upconverting MMIC mixer are embedded in the multi-layer structure of the upconverter. All spurious can be selectively rejected by employing a modified Elliptic low pass filter with a multi-pole structure for the S-band LPF. Also an improved performance of out-of-band rejection can be obtained. At the K-band BPF design a layer coupled configuration is employed. The upconverting mixer is an MMIC diode mixer with a double-balanced configuration. Conversion loss and isolation of the upconverter are 9 dB and 51 dBc, respectively. The size of the LTCC upconverter is only $8{\times}7{\times}0.6mm^3$ which is one-third for the thin-film based upconverter.

PAPER-TO-PAPER FRICTION CAUSED BY WOOD EXTRACTIVES ON THE PAPER SURFACE IS DETERMINE BY LENGTH AND ORDER OF THE HYDROCARBON CHAINS

  • Nilvebrant, Nils-Olof;Niklas Garoff;Christer Fellers
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.204-208
    • /
    • 1999
  • Friction was measured on filter paper sheets impregnated with model compounds representing wood extractives using an apparatus based on the horizontal plane principle. The best lubrication of paper surfaces was achieved when they were completely separated by a densely packed film of saturated long-chain amphophilic molecules, such as fatty acids. The fatty acids adsorbed with their polar ends on the paper surface, causing their hydrocarbon chaine to be orientated perpendicularly to the paper surface. The saturated C18-acid, stearic acid, was an efficient lubricator for paper surfaces. The introduction of a double bond in stearic acid eliminated its lubricating ability. The spatial length of the lubricating fatty acid thereby decreases from 24${\AA}$ to 11${\AA}$. However the transisomer of oleic acid, elidic acid, had the ability to lower friction due to an increased spatial length of the fatty acid. Both the spatial length of the hydrocarbon chain and the number of lubricating chains may be of importance for the paper-to-paper friction caused by wood extractives. A hydrophilic head-graup in the wood extractive and an ordered molecular layer of lubricating molecules seems also to be prerequisites for efficient lubrication. A chemical weak boundary layer between the paper sheets was suggested to cause the low friction when long chain saturated fatty acids were deposited on paper.

Root Colonization and Quorum Sensing of the Antagonistic Bacterium Pseudomonas fluorescens 2112 involved in the Red-pepper Rhizosphere (생물방제균 Pseudomonas fluorescens 2112의 고추 근권정착능과 Quorum-sensing 기능)

  • Jung, Byung-Kwon;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • Biofilm formation of multifunctional plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens 2112 is necessary for P. fluorescens 2112 to have a positive impact on the rhizosphere of red-pepper. This study investigated whether signal molecules of the quorum sensing AHLs are produced in order to confirm biofilm formative ability. Through the use of Petri dish bioassays a blue circle formed evidence of AHLs. It was confirmed that P. fluorescens 2112 produced six-carbon-chain-long AHLs by TLC bioassay. The bacterial density of P. fluorescens 2112 on the top and bottom of pepper plant roots was estimated as $3{\times}10^5$ and $8{\times}10^3$ CFU/g root, respectively. P. fluorescens 2112 exist more with high-density of $3.5{\times}10^6$ CFU/g soil at a depth of 1 cm but at a low-density of $1.1{\times}10$ CFU/g soil at a depth of 5 cm, from the surface of rhizosphere soil. In addition, biofilm formation of P. fluorescens 2112 on the epidermises and the tips of the red-pepper roots were confirmed visually by SEM. Thus, the production of AHLs by P. fluorescens 2112 brings about quorum sensing signaling and the formation of biofilm on the roots which has a positive effect on economically important crops such as red-pepper by additionally producing a variety of antifungal substances and auxin.