• Title/Summary/Keyword: Double hypergeometric series.

Search Result 9, Processing Time 0.017 seconds

RECURSION FORMULAS FOR q-HYPERGEOMETRIC AND q-APPELL SERIES

  • Sahai, Vivek;Verma, Ashish
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.207-236
    • /
    • 2018
  • We obtain recursion formulas for q-hypergeometric and q-Appell series. We also find recursion formulas for the general double q-hypergeometric series. It is shown that these recursion relations can be expressed in terms of q-derivatives of the respective q-hypergeometric series.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

DOUBLE SERIES TRANSFORMS DERIVED FROM FOURIER-LEGENDRE THEORY

  • Campbell, John Maxwell;Chu, Wenchang
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.551-566
    • /
    • 2022
  • We apply Fourier-Legendre-based integration methods that had been given by Campbell in 2021, to evaluate new rational double hypergeometric sums involving ${\frac{{1}}{\pi}}$. Closed-form evaluations for dilogarithmic expressions are key to our proofs of these results. The single sums obtained from our double series are either inevaluable $_2F_1({\frac{4}{5}})$- or $_2F_1({\frac{1}{2}})$-series, or Ramanujan's 3F2(1)-series for the moments of the complete elliptic integral K. Furthermore, we make use of Ramanujan's finite sum identity for the aforementioned 3F2(1)-family to construct creative new proofs of Landau's asymptotic formula for the Landau constants.

CERTAIN SUMMATION FORMULAS FOR HUMBERT'S DOUBLE HYPERGEOMETRIC SERIES Ψ2 AND Φ2

  • CHOI, JUNESANG;RATHIE, ARJUN KUMAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.439-446
    • /
    • 2015
  • The main objective of this paper is to establish certain explicit expressions for the Humbert functions ${\Phi}_2$(a, a + i ; c ; x, -x) and ${\Psi}_2$(a ; c, c + i ; x, -x) for i = 0, ${\pm}1$, ${\pm}2$, ..., ${\pm}5$. Several new and known summation formulas for ${\Phi}_2$ and ${\Psi}_2$ are considered as special cases of our main identities.

The Fourth and Eighth Order Mock Theta Functions

  • Srivastava, Bhaskar
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.165-175
    • /
    • 2010
  • In the paper we consider deemed three mock theta functions introduced by Hikami. We have given their alternative expressions in double summation analogous to Hecke type expansion. In proving we also give a new Bailey pair relative to $a^2$. I presume they will be helpful in getting fundamental transformations.