• Title/Summary/Keyword: Double excited

Search Result 67, Processing Time 0.02 seconds

MIMO Antenna Using Resonance of Ground Planes for 4G Mobile Application

  • Zhao, Xing;Kwon, Kyeol;Choi, Jeahoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.51-53
    • /
    • 2013
  • A MIMO antenna using the resonance of ground planes is proposed for 4G mobile application. A resonant mode is generated when the double ground planes (upper and lower) in the mobile terminal are excited as the radiator. By combining the resonant modes contributed from both the antenna element and the ground planes, the proposed MIMO antenna realizes a wideband property over LTE band 13. In addition, an inductive coil is employed to reduce the antenna volume. These approaches not only simplify antenna design but also effectively improve bandwidth and efficiency. The proposed MIMO antenna has an excellent ECC value of below 0.1 because of the nearly orthogonal radiation patterns of the two radiators. Moreover, an additional antenna is adopted to cover WiMAX, WLAN, and Bluetooth services simultaneously in frequency range from 2 GHz to 2.7 GHz.

A Study on the Vibration Characteristics of Stiffened Cylinder (보강된 실린더의 진동특성에 관한 연구)

  • Kim, Gwang-Rae;Jang, Yong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.408-414
    • /
    • 2001
  • The structural characteristics of the stiffened double cylinder was investigated through experiment and analysis. The outside cylinder was excited with piezoelectric actuator and the mode shape of the cylinder with stiffening T frame was obtained by using holographic interferometry. Finite element method was applied for further modal investigation of the stiffened cylinder. The experimental results showed that the mode shape of cylinder was dependent on the exciting frequencies and the T frame showed salient effect of damping at most of the resonent frequencies. In particular frequencies, the T frame worked as a transmitter. FFM showed similar results with the experiments. This paper showed that the laser-based method such as holographic interferometry is well suited for investigation of the whole-field mode shapes and FEM has good performance to estimate the medal characteristics of the mechanical structure.

Acoustic Analysis of High-Frequency Ultrasonic Cleaner

  • Choi, Sunghoon;Kim, Jin Oh;Kim, Yong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.49-56
    • /
    • 1997
  • Ultrasonic cleaning at high frequency around 1 MHz, called megasonic cleaning, is commonly used to remove particles less than 1 ㎛ by generating high frequency accelerations on the cleaning objects. Cleaning is performed in an ultrasonically-excited liquid contained in a double-structured container. Ultrasonic waves generated by piezoelectric transducers propagate in the outer container and are transmitted through the inner container. The bottom of the inner container is inclined to make oblique incidence of the ultrasonic wave in order to raise the efficiency of the transmission through the bottom plate. This work deals with the efficiency of the transmission, which directly affects the cleaning performance. The transmission characteristics of the ultrasonic wave in the megasonic cleaner have been obtained analytically and numerically for the variations of some parameters, such as the thickness and inclined angle of the bottom plate of the inner container and the chemical ratio and temperature of the cleaning liquid. The calculated results have yielded the optimum cleaning condition in terms of the sound power transmitted into the cleaning liquid.

  • PDF

Characterization of a Helicon Plasma Source (헬리콘 플라즈마원의 특성)

  • 현준원;노승정;김경례;김창연;김현후
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.658-664
    • /
    • 1999
  • Helicon sources are attractive for plasma processing because they provide high plasma density in low magnetic fields. Helicon waves were excited by a Nagoya type III antenna in a magnetized plasma column. Plasma parameters were measured with a double probe, and the structure and adsorption of the helicon wave fields were determined with the probes. Argon is fed through a MFC (mass flow controller) for operation pressure of 10~110 mtorr. A 13.56 MHz r.f. power of 50~450 W is induced through the antenna. The plasma density and electron temperature are measured as functions of external magnetic field, r.f. power and pressure. The plasma density as functions of r.f. power and magnetic field at a constant pressure increased linearly, and the electron temperature did not change largely with various operation parameters and the value was around 5~7 eV.

  • PDF

The calculation of thrust force and determination of parameters in moving magnet type LDM with double excited (이중 여자 방식 가동자석형 LDM의 추력 산정과 파라미터 산출)

  • Kweon, Hyuk-Inn;Kim, Yong;Baek, Soo-Hyun;Cho, Gyu-Man;Kim, Il-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.160-163
    • /
    • 1999
  • The thrust force of moving magnet-type linear direct current motors(MM-LDM) is analyzed in this study. A moving magnet-type LDM consists of a stator and a carriage. The stator is composed of two stick shaped electro magnetics and the carriage consists of a movable permanent magnet that is located between the two electromagnets. The method for calculating the thrust force of an MM-LDM is to analyze the energy gradient which is determined by the distribution of magnetic flux. And this paper describes the development of the generalized machine theory for d.c. linear motors and its application to determine the motor parameters.

  • PDF

Selenide Glass Optical Fiber Doped with $Pr^{3+}$ for U-Band Optical Amplifier

  • Chung, Woon-Jin;Seo, Hong-Seok;Park, Bong-Je;Ahn, Joon-Tae;Choi, Yong-Gyu
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • $Pr^{3+}-doped$ selenide glass optical fiber, which guarantees single-mode propagation of above at least 1310 nm, has been successfully fabricated using a Ge-Ga-Sb-Se glass system. Thermal properties such as glass transition temperature and viscosity of the glasses have been analyzed to find optimum conditions for fiber drawing. Attenuation loss incorporating the effects of an electronic band gap transition, Rayleigh scattering, and multiphonon absorption has also been theoretically estimated for the Ge-Ga-Sb-Se fiber. A conventional double crucible technique has been applied to fabricate the selenide fiber. The background loss of the fiber was estimated to be approximately 0.64 dB/m at 1650 nm, which can be considered fairly good. When excited at approximately 1470 nm, $Pr^{3+}-doped$ selenide fiber resulted in amplified spontaneous emission and saturation behavior with increasing pump power in a U-band wavelength range of 1625 to 1675 nm.

  • PDF

Comparative study on cracked beam with different types of cracks carrying moving mass

  • Jena, Shakti P.;Parhi, Dayal R.;Mishra, Devasis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.797-811
    • /
    • 2015
  • An analytical-computational method along with finite element analysis (FEA) has been employed to analyse the dynamic behaviour of deteriorated structures excited by time- varying mass. The present analysis is focused on the comparative study of a double cracked beam with inclined edge cracks and transverse open cracks subjected to traversing mass. The assumed computational method applied is the fourth order Runge-Kutta method. The analysis of the structure has been carried out at constant transit mass and speed. The response of the structure is determined at different crack depth and crack inclination angles. The influence of the parameters like crack depth and crack inclination angles are investigated on the dynamic behaviour of the structure. The results obtained from the assumed computational method are compared with those of the FEA for validation and found good agreements with FEA.

Staring Characteristic of Wound Rotor Induction Motor by New Winding Method (새로운 권선법에 의한 권선형 유도전동기의 기동특성)

  • 강만원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.27-31
    • /
    • 1999
  • This paper covers starting characteristics and design of wound motor induction rmtor can used to double excited induction mootor. They are employing in many electrical equiprrent system of industrial field The stator is satre as that of conventional induction motor. But rotor was rewind with new style, as result both of starting torque and operating efficiency could be high, But starting current could be small. Could obtain the satre result as that of conventional induction rmtor with external resistance on the rotor. The structure could be simple, system cost could be low and the maintanence free, Because of no slip rings, no brushes and no external resistance.stance.

  • PDF

Combustion stability assessment of muti-injector using simulant propellant in LRE (모의 추진제를 이용한 액체로켓엔진용 다중 분사기의 연소안정성 평가 방법)

  • Seo Seonghyeon;Song Joo-Young;Seol Woo-Seok;Lee Kwang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.229-234
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for double swirl coaxial injectors to identify their combustion stability characteristics. Gaseous oxygen and mixture of methane and propane have been used as simulant propellants. Two model chambers tuned to the If acoustic resonance mode of a full-scale thrust chamber were manufactured to be used as a combustion cylinder. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Self-excited dynamic pressure values in a model chamber show different combustion stability zones with respect to a recess number. Upon test results, couplings between combustion conditions and the IT acoustic resonance mode become strengthened with the increase of a recess length.

  • PDF

Theoretical Investigation of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride: A Thermally Irreversible Photochromic System

  • 조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.308-313
    • /
    • 1998
  • A thermally irreversible photochromic system, 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride (MTMA), has been studied by semi-empirical molecular orbital methods. There are one pair of stable conformations for the closed-ring form and three pairs for the open-ring form, each pair consisting of two mirror-image conformations. Interconversion between the parallel and anti-parallel conformations of the open-ring form is restricted due to high energy barriers. Only the anti-parallel conformation appears to be responsible for photochromic cyclization. Thermostability of the compound is attributed to an avoided crossing at high energy in the ground states of the isomers, whereas the photoreactivity can be explained by the mutually connected excited singlet (S1) states of the isomers, forming a double well potential with a low energy barrier. The large solvent effects can be partly explained with the low dipole moment of the anti-parallel conformation of MTMA in the S1 state. The large variation of quantum efficiency suggests that excess vibronic energy can be utilized to provide the activation energy for the photochromic reaction.