• 제목/요약/키워드: Double edged notch(DEN)

검색결과 2건 처리시간 0.012초

자동차용 폴리머 복합재료의 변형과 강도에 관한 연구 (A study on deformation and strength of polymer composites using automobiles)

  • 신재훈;임재규;박한주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.238-243
    • /
    • 2000
  • The effect of the temperature, the fatigue and the test speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was stuied. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength is linearly decrease and the fracture energy is first increase by $0^{\circ}C$ and after that decrease. In the same temperature the fracture strength during increasing the notch radius is hardly increase. The fracture behaviour at low and high test speed is different entirely. At high test speed plastic region is small and fracture behaviour was seen to brittle fracture tendency. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix material ahead of the notch/crack occured. The deformation seem to be enhanced by a thermal blunting of the notch/crack.

  • PDF

자동차용 고강도 폴리머 복합재료의 변형과 강도에 관한 연구 (A Study on Deformation and Strength of High-Strength Polymer Composites Using Automobiles)

  • 임재규;신재훈;박한주
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1082-1088
    • /
    • 2001
  • Nowadays study on recycling disused plastics for automobiles was lively progressed. Rubber and talcum powder was added to retrieve degradation of physical properties caused by recycling disused polypropylene. The effect of the temperature, the fatigue load and the loading speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was studied by. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength was linearly decreased and the fracture energy was increased by $0^{\circ}C$ and after that decreased. In the same temperature the fracture strength during increasing the notch radius was hardly increased. The fracture behaviour at low and high loading speed was different entirely. At high loading speed plastic region was small and fracture behaviour was seen to brittle fracture tendency. With increasing fatigue load fracture energy was first rapidly decreased and subsequently steady when radius of notch tip was 2mm, but Maximum load during fracture scarcely varied. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix ahead of the notch/crack occurred. The deformation seem to be enhanced by a thermal blunting of the notch/crack.