• Title/Summary/Keyword: Double chamber

Search Result 134, Processing Time 0.03 seconds

An Experimental Study of Performance Characteristics on a Double Chamber Rotor Operated by High Pressure Air with Various Vanes (공압용 더블챔버 로터에서 베인개수에 따른 성능특성에 관한 실험적연구)

  • Cho, Chong-Hyun;Choi, Sang-Kyu;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.54-62
    • /
    • 2006
  • An experiment about performance characteristics is conducted on a double chamber vane-type rotor. Three different rotors, which have 6, 8 and 9 vanes, are applied to the driver and various lift holes at the rear plate are used to increase the effective vane height. The inner diameter of a double chamber cylinder is ${\phi}27mm$, and the length of the cylinder is 65 mm. The maximum offset length between the rotor outer surface and the cylinder inner surface is 4.5 mm. In this study, specific output torques and powers are measured, and also noise and vibration are measured at the real operating situation. The operating torque on the double chamber is increased to 17% compared to the operating torque obtained at the single chamber which has the same size. The experimental results of noise and vibration show that the operating sound and vibration are directly related to the operating power generated by the double chamber rotor.

Development of having double-chamber in micro-bubble pump (두 개의 챔버를 갖는 마이크로 버블펌프의 개발)

  • 최종필;박대섭;반준호;김병희;장인배;김헌영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1186-1190
    • /
    • 2003
  • In this paper, a valveless bubble-actuated fluid micropump was has been developed and its performance was tested. The valveless micropump consists of the lower plate, the middle plate, the upper plate and a resistive heater. The lower plate includes the nozzle-diffuser elements and the double-chamber. Nozzle-diffuser elements and a double-chamber are fabricated on the silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The lower plate also has inlet/outlet channels for fluid flow. The middle plate is made of glass and plays the role of the diaphragm. The chamber in the upper plate is filled with deionized water, and which contacts with the resistive heater. The resistive heater is patterned on a silicon substrate by Ti/Pt sputtering. Three plates and the resister heater are laminated by the aligner and bonded in the anodic bonder. Since the bubble is evaporated and condensed periodically in the chamber, the fluid flows from inlet to outlet with respect to the diffusion effect. In order to avoid backflow, the double chamber system is introduced. Analytical and experimental results show the validity of the developed double-chamber micropump.

  • PDF

The Effect of High Pressure Chamber's Shape on the Characteristics of Annular Jet Pump (고압실 형상에 따른 환형 제트펌프의 특성)

  • 권오붕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.428-434
    • /
    • 1999
  • Experimental studies on the characteristics of annular jet pump were carried out in this paper. Jet pump can be used widely for the transportation of solid materials, farm produce and fishes. The effects of high pressure chamber on the characteristics of annular jet pump were sought in this paper. Experiments were done for three shapes of high pressure chamber, and for several lengths of the high pressure chamber. Three types of the high pressure chamber's entrances($90^{\circ}$ single inflow, $45^{\circ}$single inflow, and $45^{\circ}$ double inflow) were tested. Water was used for both the primary fluid and secondary fluid. The results obtained in this study are as follows; $45^{\circ}$double inflow type is the most effective among the tested three types of the high pressure chamber's entrances. The efficiency of jet pump with 400mm of high pressure chamber length is the highest among the chamber lengths tested in this study, thus indicating appropriate chamber length is required to get an efficient.

  • PDF

The Effect of High Pressure Chamber's Shape on the Characteristics of Annular Jet Pump (고압실 형상에 따른 환형 제트펌프의 특성)

  • Kim, Myung Gwan;Kwon, Oh Boong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.75-81
    • /
    • 2000
  • Experimental studies on the characteristics of annular jet pump were carried out in this paper. The effects of high pressure chamber on the characteristics of annular jet pump were sought in this paper. Experiments were done for three shapes of high pressure chamber, and for several lengths of the high pressure chamber. Three types of the high pressure chamber's entrances($90^{\circ}$ single inflow, $45^{\circ}$ single inflow, and $45^{\circ}$ double inflow) were tested. Water was used for both the primary fluid and secondary fluid. The results obtained in this study are as follows; $45^{\circ}$ double inflow type is the most effective among the tested three types of the high pressure chamber's entrances. The efficiency of jet pump with 400mm of high pressure chamber length is the highest among the chamber lengths tested in this study, thus indicating appropriate chamber length is required to get an efficient jet pump.

  • PDF

A Prediction of Pollutant Emission Rate using Numerical Analysis and CFD in Double-Layered Building Materials (수치해석 및 CFD를 이용한 소형챔버내 복합건축자재의 오염물질 방출량 예측)

  • Kim, Chang-Nam;Leigh, Seung-Bok;Kim, Tae-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.277-282
    • /
    • 2006
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in double-layered building materials through the CFD(Computational of Fluid Dynamics) and Numerical analysis based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient($h_m'$) which indicates the existing convective mass transfer coefficient($h_m$) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

  • PDF

Comparison of Maximum Horizontal Wave Force Acting on Perforated Caisson Breakwater with Single and Double Chamber (단일 및 이중유수실 유공케이슨 방파제에 작용하는 최대 수평파력 비교)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young Min;Jang, Se-Chul;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.335-341
    • /
    • 2014
  • Physical experiments were carried out to measure the wave force on the vertical walls of perforated breakwater considering several phases of a wave acting on the breakwater. The maximum horizontal wave force acting on each vertical wall was compared between single and double chamber caisson breakwater. The experimental data in this study showed that the total horizontal wave force for double chamber caisson was 9.6% smaller on average than that for single chamber caisson when the total chamber width was the same for both caissons. Such reduction of the wave force is due to the dissipation of wave energy at the porous middle wall, which is located between the porous front wall and non-porous rear wall.

Development of Large Calibration Chamber System (Large Calibration Chamber의 개발)

  • 정충열;김태준;김대규;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.673-678
    • /
    • 2002
  • Laboratory calibration chamber tests for cone penetrometers, pressuremeters and dilatometers in cohesionless soil specimens have been conducted by numerous researchers. However, there have been only few applications to compacted or preconsolidated cohesive soils. Therefore, for the first time, Calibration Chamber System was developed in Korea University. This can be attributed to the extremely time consuming and laborious process involved in the preparation of large cohesive soil specimens in addition to other complexities involving instrumentation for pore pressure monitoring and the need for maintaing saturation by back pressure. Chamber System with similar principle as LSU Chamber System was made of more strengthen and complementary form by increasing system diameter(1.2m), carrying out 1st and 2nd consolidation process in one system for smooth and safe work, accurate Data Aquisition.

  • PDF

Wave Pressure Characteristics of Pile-Supported Breakwater with the Horizontal Slit Walls (파일지지식 소파방파제의 파압특성 분석)

  • Ko, Kwangoh;Pack, Seungwoo;Park, Changbeom;Lee, Jong-In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.119-128
    • /
    • 2015
  • This study investigates the wave pressure characteristics of the pile-supported breakwater with single or double perforated walls through 2-D hydraulic experiments and the measured wave pressures are compared to those of wave pressures by Goda's formula. For single chamber, the measured wave pressures in the front wall and rear wall decreased to about 25% and 30%, respectively, compared to those of wave pressures by Goda's formula. Also, the decrease in the wave pressures for double chamber were about 27%, 53%, and 64% in the front wall, middle wall, and rear wall, respectively. It was found that the pile-supported breakwater with double perforated walls was more efficient than the single chamber due to wave dissipation effects of double slit walls with horizontal slits.

Development of Large-Scale Rice Polisher with Double Polishing Stages (2단계 연마방식 대형 연미기의 개발)

  • 정종훈
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 1999
  • This study was conducted to develop a large-scale rice polisher with double polishing stages for producing clean rice with high quality in rice processing complexs. The performance of the developed rice polisher was evaluated and improved. The results obtained from this study were as followings : 1. A large-scale rice polisher with double polishing stages was developed, which consisted of two polishing chambers(polishing part I and II), two spraying parts, a feeding part, power of 37kW, control panel, etc. Especially, the purpose of polishing part Iwere to uniformly mix white rice sprayed with water and to remove bran particles from the rice. the roller surface of the polishing part I was coated with chromium. 2. The capacity of the developed rice polisher was 4t/h. The broken rice rate of the polisher was less than 0.2%, compared with about 1% of others. 3. The whiteness increment of the developed polisher was 2.6~3.0% compared with about 2.3~2.5% of others. 4. The energy consumption of the developed polisher was 0.5kWh/100kg. 5. The developed polisher was improved with the angle change of screen slot of the polishing chamber I. The broken rice rate was reduced from about 0.5% to about 0.2% as the max. internal pressure of the polishing chamber II decreased by 0.4kg/$\textrm{cm}^2$ due to the increase of resistance in the polishing chamber I. The whiteness of the polisher showed more than 38~39. 6. The developed rice polisher showed high performance, compared with other domestic and foreign polishers.

  • PDF

Reflection Characteristics of Vortical Slit Caisson Breakwater (종 SLIT형 케이슨 방파제의 반사특성)

  • 이종인;조지훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • Recently, some attempts to construct slit caisson-type breakwaters are made in Korea. Since slit caisson-type breakwaters are suitable for relatively deep sea areas, a lot of theoretical and experimental researches have been performed. In this study, the reflection characteristics of vertical slit caisson breakwaters are investigated based on the measured data in two-dimensional hydraulic model tests with irregular waves. The experiments were conducted for various cases; variation of porosity of perforated-wall, width of wave chamber, number of slits for single-and double-chamber, respectively. It is found that in the case when the wave steepness (H/L$_{s}$ ) is small, the reflection coefficients are large. The existing researches have shown that the wave reflection is minimized when the nondimensional width of wave chamber B/L is about 0.2~0.25 for the regular waves. However, for the irregular waves the reflection is lowest when $B/L_2$, is 0.13~0.15. For a same porosity condition, the wave dissipation is stronger as the width of s1it is larger. The double-chamber caisson is superior to single- chamber caisson in the wave dissipating effects.

  • PDF