• Title/Summary/Keyword: Double angle

Search Result 482, Processing Time 0.03 seconds

Flutter Characteristics of Double-Swept Composite Wings (이중 후퇴각을 갖는 복합재 날개의 플러터 특성)

  • Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF

Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique (전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발)

  • Rehmana, M.;Choi, J.W.;Ryu, S.J.;Park, J.H.;Ryu, S.W.;Khim, Z.G.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF

Analytic Factor Effects Analysis of Bending Process of Double Pipe for Tube-Hydroforming using Experimental Design (실험계획법을 이용한 튜브 하이드로 포밍용 이중관 벤딩 공정의 해석적 요인 효과 분석)

  • Shim, D.S.;Jung, C.G.;Seong, D.Y.;Yang, D.Y.;Park, S.H.;Kim, K.H.;Choi, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.310-313
    • /
    • 2007
  • This paper covers finite element simulations to evaluate the bending limit of double pipe for tube-hydroforming. The tube-hydroforming process starts with a straight precut tube. The tube is often prebent in a rotary draw bending machine to fit the hydroforming tool. During the bending the tube undergoes significant deformation. So forming defects such as wrinkling, thinning and flattening are generated in the tube. Consequently we analyzed the effect of process parameters in rotary draw bending process and searched the optimized combination of process parameters to minimize the forming defects using orthogonal arrays. The characteristic to evaluate the effects of the process parameters is the bending angle which wrinkling is generated, we define the bending angle at that time as bending limit. Of many process parameters, the process parameters of the bending process such as gab between inner and outer tube, boosting force, dimensions of mandrel were analyzed. And we observed the deformation modes of bent double pipe at specific bending angle in each parameter combination.

  • PDF

The Effects of the Mounted Method of Frame of a Large Truck on Handling Performance (대형트럭 프레임의 결합방법이 조종성능에 미치는 영향)

  • 문일동;오재윤;오석형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.112-119
    • /
    • 2004
  • This paper develops a computer model of a cabover type large truck for estimating the effects of the mounted method of frame on handling performance. The computer model considers two mounted methods of frame; flange mounted and web mounted. Frame is modeled by finite elements using MSC/NASTRAN in order to consider the flexibility of frame. The reliability of the developed computer model is verified by comparing the actual vehicle test results with the simulation results. The actual vehicle test is performed in a double lane change course, and lateral acceleration, yaw rate, and roll angle are measured. To estimate the effects of the mounted method of frame on handling performance, simulations are performed with the flange mounted and web mounted frame. Simulation results show that the web mounted frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounted frame's variations, especially in the high test velocity and the second part of the double lane course. Also, simulation results show that the web mounted frame's tendencies of roll angle, lateral acceleration, and yaw rate advance the flange mounted frame's tendencies, especially in the high test velocity and the second part of the double lane course.

Design Method for a Total Internal Reflection LED Lens with Double Freeform Surfaces for Narrow and Uniform Illumination

  • Yang, Jae Suk;Park, Jae-Hyeung;O, Beom-Hoan;Park, Se-Geun;Lee, Seung Gol
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.614-622
    • /
    • 2016
  • In this paper, we propose a novel differential equation method for designing a total internal reflection (TIR) LED lens with double freeform surfaces. A complete set of simultaneous differential equations for the method is derived from the condition for minimizing the Fresnel loss, illumination models, Snell’s Law of ray propagation, and a new constraint on the incident angle of a ray on the light-exiting surface of the lens. The last constraint is essential to complete the set of simultaneous differential equations. By adopting the TIR structure and applying the condition for minimizing the Fresnel loss, it is expected that the proposed TIR LED lens can have a high luminous flux efficiency, even though its beam-spread angle is narrow. To validate the proposed method, three TIR LED lenses with beam-spread angles of less than 22.6° have been designed, and their performances evaluated by ray tracing. Their luminous flux efficiencies could be obviously increased by at least 35% and 5%, compared to conventional LED lenses with a single freeform surface and with double freeform surfaces, respectively.

Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Double Web-Angle (더블 웨브앵글 반강접 CFT 기둥-보 접합부의 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This paper presents the results from a systematic finite element study on the bending moment resisting capacity of double web-angle connection for a CFT(concrete filled tube) composite frame subjected to cyclic loading. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes of the partially restrained composite CFT connections. A wide scope of additional structural behaviors explain the different influences of the double web-angle connections parameters, such as the different thickness of connection angles and the gage distances of high strength steel connection bar. The moment-rotation angle relationships obtained statically from the finite element analysis are compared with those from Richard's theoretical equation.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.

A study on the link composition design of a double link type level luffing jib crane (II) (이중 링크 형식 수평 인입 집 크레인의 링크 구성 설계에 관한 연구(II))

  • Hur, C.W.;Choi, M.S.;Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • It is very important to determine link composition of a crane in the basic design of the crane. There are many parameters in the design for the link composition of a double link type level luffing jib crane. We analyze the variation of link composition according to the variation of these parameters which are the angle of fixed link, the angle between the fixed link and backstay when the position of the crane is the maximum working radius, the ratio of fly jib length between two moving hinges to the total length of fly jib, the length of backstay, and the slewing radius. In this paper, we describe the application of the previous analysis program of the link composition design for a double link type level luffing jib crane.

Investigation on the Hydrodynamic Characteristics of Double Plate Steel Rudder for Small Fishing Boat (소형 어선용 이중강판 방향타의 유체역학적 특성 조사)

  • An, N.H.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.24-29
    • /
    • 2012
  • In this study, the numerical simulation has been performed to investigate the hydrodynamic evaluation between double plate steel rudder and newly designed foil type rudder for small fishing boat. The simulations are carried out in 2 speed ranges with 7 variations of flow's angle of attack which is at intervals of about 5 degree respectively. As the well-known commercial code, FLUENT and CATIA are used as the solver. The simulation results show that new designed foil type rudder is better than conventional double plate rudder in terms of Lift and Drag of running boat in the water.

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.