• Title/Summary/Keyword: Double Pipe Heat Exchanger

Search Result 44, Processing Time 0.02 seconds

The Inprovement of the Heat Exchanger Performance by Shape Modification(I)-Experimental Analysis of the Heat Transfer Enhancement by Attached Wires in a Double Pipe Heat Exchanger- (형상변화 에 의한 열교환기 의 열전달 성능 향상 (I) -이중 동심원관내에 와이어 부착시의 열전달 촉진에 대한 실험적 해석-)

  • 노승탁;이택식;강신형;김진오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.71-80
    • /
    • 1985
  • The various sizes of wires are attached to the outside of the inner tube in a double pipe heat exchanger to enhance the thermal performance. The diameters of the wires range from 0.5mm to 1.6mm while the pitches are chosen between 5mm and 50mm. Experiments have been performed with the range of Reynolds numbers from 15000 to 30000 in annular space where air flows. The friction factors are increased by 1.5 to 4.5 times depending on the sizes and the pitches of the wires. However, the Nusselt numbers are increased by the factors of 1.8 to 2.8 within this experimental range. It is suggested that there should be an optimum configuration rendered when the weighting values of the heat transfer promotion and the pumping power are given.

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Sensitivity Analysis on Design Factor of Ground Heat Exchanger for Optimum Design of Vertical Ground Source Heat Pump System (수직밀폐형 지중열교환기의 최적설계를 위한 설계인자 영향도 분석)

  • Bae, Sangmu;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.87-93
    • /
    • 2018
  • Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.

Development of a Particle Bed Heat Exchanger(II) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Parallelflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(II) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究)(병행류식(竝行流式)))

  • Kim, G.C.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.127-136
    • /
    • 1990
  • Air-solid bed has been known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop and heat transfer characteristics of vertical annular fluidized bed heat exchanger with air flowing through were studied experimentally. The experiments was conducted to calculate overall heat transfer coefficient on fluidized bed heat exchangers immersed single vertical tube and investigate minimum fluidized velocity in fluidized bed of alumina beads and steel balls. The influence of flow direction, particle diameter, the heights of static bed and air mass fluidizing velocity has been examined. The experimental results showed the optimum operating condition and effective static bed height for fluidized bed heat exchangers. For the same power loss, comparisions of heat transfer effect between the fluidized bed heat exchanger and the single phase forced convetion heat exchanger indicate that both miniaturization of heat exchanger and heat transfer augmentation at low flow velocity are possible by application of the air-solid to heat exchangers.

  • PDF

A study on the single-phase heat transfer in a counter-flow double-pipe heat exchanger by Wilson plot technique (Wilson plot기법을 이용한 2중관식 대향류 열교환기의 단상 열전달에 관한 연구)

  • Ohm, Ki-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.93-100
    • /
    • 2006
  • An experimental study of a counterflow heat exchanger was performed. The heat exchanger had an effective heat transfer length of 1000mm and was operated in a counterflow arrangement with hot water($30{\pm}0.5^{\circ}C$, $Re_i=3500{\sim}20000$) in the inner tube(copper tube, $d_0=9.52mm$) and cold water($15{\pm}0.5^{\circ}C$, $Re_{DH}=10700{\sim}39000$) in the annulus(copper tube, $D_0=19.05mm$). Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner tube and the annulus were determined using Wilson plots. The inner Nusselt number was compared with that of Gnielinski's correlation and they agreed within ${\pm}10%$ error. The trends were typical for a fluid-to-fluid heat exchanger with the overall heat transfer coefficient increasing with both inner and annulus flow rates. In the range of this experiment, Nusselt numbers for the inner tube flow were almost identical with those of the annulus flow at the same Reynolds number.

A Basic Study on Fluidized Bed Heat Exchanger with Finned Tube (유동층형(流動層形) 핀관(管) 열교환기(熱交換器)의 열전달특성(熱傳達特性)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Lee, S.W.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.168-175
    • /
    • 1991
  • Experiments have been conducted to measure the overall heat transfer coefficient for gas-solid fluidized double pipe heat exchanger with finned tube. The average particle diameters of alumina are used in 0.4, 0.5, 0.6 and 0.9mm. And the effects of average particle diameter, static bed height and flow velocity on overall heat transfer coefficient have been investigated. Also the heat transfer effect of fluidized bed was compared with that of single phase forced convection and that of heat exchanger with smooth tube.

  • PDF

Performance Analysis of a Vertical Double Pipe Heat Exchanger for Latent Heat Storage (수직이중관형 잠열축열장치의 성능분석)

  • Kim, Young-Bok;Song, Hyun-Kap
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 1990
  • For the optimal design and the efficient operation of the double pipe type latent heat storage equipment, the effect of the parameters of the system were analysed. The statistical analysis showed that the theoretical and the experimental results of the volume change rate and the temperature variations were well agreed. Therefore, this theoretical model is reasonable to analyze two dimensional moving boundary problems. In the analysis of the effects of the parameters, the heat extraction fraction and the water outlet temperature of the system as function of the time were analysed depending on the initial temperature of PCM, water inlet temperature, water mass flow rate and the dimension of the inner tube.

  • PDF

Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers (2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF