• Title/Summary/Keyword: Double Pipe

Search Result 171, Processing Time 0.03 seconds

Thermal Analysis of Double-tube Triple-flow LNG Vaporization System (이중관 삼중흐름 열교환에 의한 LNG 기화시스템의 열적 해석)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.839-844
    • /
    • 2003
  • As sea water is being used as only heat source of LNG open rack vaporizer, serious problem has been risen in LNG terminal by the lack of heating energy source for LNG vaporization due to the temperature drop of sea water in winter. In this paper the new double-tube triple-flow(TRIDEX) vaporizer was suggested to solve the problem and the system was thermally analysed. LPG(liquefied petroleum gas) and sea water were introduced as the heat sources for LNG TRIDEX vaporizer. The flow patterns of TRIDEX vaporizer are as follows: LNG flow in the annular space, PG(petroleum gas) flow in the inner tube, and sea water flow in the outside of the double pipe. The overall LNG vaporization system was consisted of TRIDEX vaporizer, LPG vaporizer and PG heater. LPG in TRIDEX was directly dispersed in the sea water desalination unit, so that LPG turns to be gas phase for the reuse in TRIDEX vaporizer. New TRIDEX vaporizer system for LNG evaporation was analysed as much more effective than the present single tube one in the case of colder temperature of sea water in winter.

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Characteristics of Evaporation Heat Transfer in a Small-Scale Cryogenic Heat Exchange System for the Utilization of LNG Cold Energy (LNG 냉열활용을 위한 초저온 열교환시스템의 축소모형에서 증발 열전달 특성)

  • Nam S. C.;Lee S. C.;Lee Y. W.;Sohn Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.25-33
    • /
    • 1998
  • The characteristics of evaporation heat transfer for the utilization of LNG cold energy was investigated experimentally using liquified nitrogen and a solution of ethylene-glycol and water under horizontal two-phase conditions in the small-scale equipment of a cryogenic heat exchange system. The inner tubes in the double pipe heat exchanger with 8 mm and 15 mm inner diameter and 6 m length were adopted as a smooth test tubes and enhanced tubes by means of wire-coil inserts. Heat transfer coefficients and Nusselt number for the test tube were calculated from measurements of temperatures, flowrates and pressures. The correlations in a power-law relationship of the Nusselt number, the Reynolds number and Prandtl number for heat transfer were proposed which can be available for design of cryogenic heat exchangers. The correlations showed heat transfer coefficients for the wire-coil inserts were much higher than those for the smooth tubes, increased by more than 2.5 ${\~}$ 5.5 times depending upon the equivalent Reynolds number. Form and length of cryogenic double pipe heat exchanger were proposed for applicable to the utilization of LNG cold energy.

  • PDF

Present Condition of Indoor Noise Level in One-Room Type Multi-Family Housings around Campus (대학주변 원룸형 다가구주택의 실내소음수준 실태)

  • Choi Yoon-Jung
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.191-198
    • /
    • 2005
  • The present study is a preliminary research improving the dwelling quality of one-room type multi-family housings around the university campus. The purpose of the study is to investigate the present condition of Indoor noise level using · residents' responses and field measurements. The respondents are 104 residents living in one-room type multi-family housings. The field measurements on equivalent noise level of indoor and outdoor were carried out in 6 subject house units during the $26th\~28th$ of November 2002. The results are as follows. 1) The residents show relatively non-positive responses at evening and night on the present condition of indoor noise. 2) They answer 'living equipment foise' and 'water hammer' as major types of indoor noise of house unit. 3) Outdoor noise levels, basic factor of noise environment in 6 subject buildings were distributed $52.8\~65.3dB(A)Leq_{5min}$ and were inappropriate to the standard for environmental noise, $55 dB(A)Leq_{5min}$. 4) Indoor noise levels of subject house units were measured as $27.5\~63.5dB(A)Leq_{5min}$, the average of each house unit except one house unit was higher than the level feeling as noise, 40dB(A). 5) It was found that the differences of indoor noise levels between subject house units were caused by 'residents' living noise', 'living equipment noise', 'water hammer', and 'walking and talking noise in stairs and corridors'. 6) Therefore, it is required to plan for improving the quality of noise environment in one-room type multi-family housing around the campus. For example, soundproof construction (including double window with pair glass and balcony), outdoor garden with trees and water for increasing natural sound, interior materials with sound absorbing power to absorb living noise, soundproof pipe or double surface pipe for decreasing 'water hammer', and noiseproof floors, etc. are required.

An analysis of acoustic pressure in the center of double pipe inside of a cylindrical vibrator (원통형 진동자 내부의 이중관 중심에서의 음압해석)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.165-171
    • /
    • 2017
  • The effect of the concentric solid tube inserted inside the vibrator on the sound field distribution was analyzed for the sound waves focused on the center axis in the fluid - filled cylindrical piezoelectric transducer. The sound waves radiated from the inside of the cylindrical piezoelectric vibrator are transmitted through the fluid medium and are reflected or transmitted on the wall surface of the solid tube, and are focused on the central axis. At this time, the sound field distribution centered on the acoustic tube varies depending on the acoustic impedance and the thickness of the solid tube. In order to theoretically analyze this, the transfer matrix for each medium is derived, and the sound pressure level at the center axis is theoretically analyzed. For the acrylic tube with various thicknesses, the changing trend in the sound pressure level measured on the central axis agrees well with the result of the theoretical analysis, and it confirmed that the sound pressure formed at the center changes very sensitively with the thickness of the solid tube.

The Improvement of the Heat Exchanger Performance by Shape Modifieation(II) (형상변화 에 의한 열교환기 의 열전달 성능 향상 (II))

  • 노승탁;이택식;강신형;이은현;송명호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.202-212
    • /
    • 1985
  • Numerical and experimental studies are presented for turbulent flows and heat transfer in annular channel with circumferential fins on the inner tube in a double pipe heat exchanger. Flow and heat transfer characteristics are periodically fully developed, and complex flow patterns are shown. Numerical calculations are executed by using modified TEACH-2E computer program based on the standard k-.epsilon. turbulence model. Mean velocity, turbulent kinetic energy, and Reynolds stress distributions are measured with the hot wire anemometer. Static pressures on the outer wall of the pipe are measured for three pitch-height ratios and several Reynolds numbers. Numerical predictions generally show reasonable results in comparison with experimental results. When the pitch-height ratio is about 5.0 and other geometric parameters are fixed in this paper, maximum heat transfer is achieved. Reattaching flow patterns appeared in this region. As the pitch between fins is increased beyond 5.0, mean Nusselt numbers are decreased and the pressure drop through one pitch almost remains.

Wave shape analysis of seismic records at borehole of TTRH02 and IWTH25 (KiK-net)

  • Kamagata, Shuichi
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.297-312
    • /
    • 2020
  • The KiK-net by NIED is a vertical array measurement system. In the database of KiK-net, singular pulse waves were observed in the seismic record at the borehole of TTRH02 during the mainshock (the magnitude of Japan Meteorological Agency (MJ) 7.3, MW 6.8) and aftershock (Mj 4.2) of Tottori-ken Seibu earthquake in 2000. Singular pulse waves were also detected in the seismic records at the borehole of IWTH25 during the Iwate-Miyagi Nairiku earthquake in 2008 (MJ 7.2, MW 6.9). These pulse waves are investigated by using the wave shape analysis methods, e.g., the non-stationary Fourier spectra and the double integrated displacement profiles. Two types of vibration modes are discriminated as the occurrence mechanism of the singular pulse waves. One corresponds to the reversal points in the displacement profile with the amplitude from 10-4 m to 10-1 m, which is mainly related to the fault activity and the amplification pass including the mechanical amplification (collision) of the seismograph in the casing pipe. The other is the cyclic pulse waves in the interval of reversal points, which is estimated as the backlash of the seismograph itself with the amplitude from 10-5 m to 10-4 m.

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Failure Analysis of Stress Reliever in Heat-Transport Pipe of District Heating System

  • Cho, Jeongmin;Chae, Hobyung;Kim, Heesan;Kim, Jung-Gu;Kim, Woo Cheol;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.243-249
    • /
    • 2022
  • The objective of the present study was to perform failure analysis of double-layered bellow (expansion joint), a core part of stress reliever, used to relieve axial stresses induced by thermal expansion of heat-transport pipes in a district heating system. The bellow underwent tensile or compressive stresses due to its structure in terms of position. A leaked position sufferred a fatigue with a tensile component for decades. A cracked bellow contained a higher fraction of martensitic phase because of manufacturing and usage histories, which induced more brittleness on the component. Inclusions in the inner layer of the bellow acted as a site of stress concentration, from which cracks initiated and then propagated along the hoop direction from the inner surface of the inner layer under fatigue loading conditions. As the crack reached critical thickness, the crack propagated to the outer surface at a higher rate, resulting in leakage of the stress reliever.

Structural Analysis of Cheju-style Plastic Greenhouse Model for Crop Growing Based on the Wind Load (풍하중을 고려한 제주형 작물재배용 비닐하우스모델의 구조해석)

  • 민창식;김용호;권기린
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • An elastic analysis under wind load was performed for the double layered plastic greenhouse model developed particularly for minimizing damages under typhoons at Cheju Citrus Research institute in Seagipo city. General EVA film was used for the inner covering and the developed special film which would break the wind pressure down was used for the outer covering. The wind tunnel test showed this special film reduced the wind speed up to 86 to 98% under well controlled situation. Based on the elastic analysis performed in the study, the behavior of the greenhouse was changed significantly due to the boundary conditions. Not like other researchers before we applied dead load of the concrete support to the ground pipe and fixed support boundary conditions at the 4 corner pipes. The analysis shows that the greenhouse was lifted and pulled the pipe out of the ground due to the sucking wind pressure. The behavior of the greenhouse was quite similar to that one real greenhouse failure. Therefore, not only we need to find the realistic boundary conditions for the supports, but also need to find how to rest the pipe supports on the ground without economic loss.

  • PDF