• Title/Summary/Keyword: Double Cone

Search Result 58, Processing Time 0.027 seconds

A Numerical Study on Performance Improvement of Canopy Hood in Melting Process (용해공정의 캐노피 후드 성능 개선에 관한 수치 해석적 연구)

  • Jung, Yu-Jin;Shon, Byung-Hyun;Lee, Sang-Man;Jung, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1519-1526
    • /
    • 2013
  • This study reviewed the capturing performance of a canopy hood used in some melting processes of a casting manufacturing factory through a site survey. In addition, this study compared and evaluated the flow field and pressure field for the plans to enhance the hazardous air pollutants collection capacity by using CFD model. The case-2(flange attached + double hood) can be improved in terms of collection performance, but is expected to increase in hood static pressure by about 70% more than the existing structure, so it was shown that its site applicability is not good. It is judged that the shape of case-3(flange attached + double cone attached) is most suitable to improve the suction efficiency. This is because a double cone is installed at the center of the opening to concentrate the flow rate on the edge of the hood and control the hume rising to the center of the hood without a static pressure rise via the slope of the cone.

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.

Improving support performances of cone bolts by a new grout additive and energy absorber

  • Komurlu, Eren
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.

Double Bootstrap Confidence Cones for Sphericla Data based on Prepivoting

  • Shin, Yang-Kyu
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.183-195
    • /
    • 1995
  • For a distribution on the unit sphere, the set of eigenvectors of the second moment matrix is a conventional measure of orientation. Asymptotic confidence cones for eigenvector under the parametric assumptions for the underlying distributions and nonparametric confidence cones for eigenvector based on bootstrapping were proposed. In this paper, to reduce the level error of confidence cones for eigenvector, double bootstrap confidence cones based on prepivoting are considered, and the consistency of this method is discussed. We compare the perfomances of double bootstrap method with the others by Monte Carlo simulations.

  • PDF

Study of Numerical Modeling of Swirl-Premix Burner for Simulation of Gas Turbine Combustion (가스터빈 연소기의 연소장 해석을 위한 스월 예혼합 버너의 수치적 모델링에 관한 연구)

  • Baek, Gwang Min;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • The flow and combustion characteristics in a premixed swirl combustor with a double cone burner are numerically analyzed to adopt a swirler model. The internal recirculation zone formed at the burner exit can be realized by a swirler with inner and outer diameters of 56 and 152 mm, respectively, and accordingly, the flow rate and radial velocity were determined. To select the tangential velocity, swirl and recirculation angles are introduced. A tangential velocity of 40 m/s produces an internal recirculation zone similar to that in a combustor. At the liner exit, the errors in temperature and velocity are 2.8% and 0%, respectively, and they are negligibly small. However, NOx emissions are underestimated by 67% in the numerical results obtained using the swirler model. Although considerable quantitative errors are induced by the swirler model, it can be useful numerical model for the EV burner because it can approximately simulate the essential flow and combustion characteristics in a premixed swirl combustor with a double cone burner and it is expected to make combustion analysis efficient in a gas turbine combustor with complex geometries.

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.

Comparative Study of the Retinal Structure in Two Korean Endemic Freshwater Fishes, Zacco koreanus (Cyprinidae) and Pseudobagrus koreanus (Bagridae) Based on Their Habitats (참갈겨니 Zacco koreanus와 눈동자개 Pseudobagrus koreanus의 생태학적 차이에 의한 망막 조직의 비교 연구)

  • You, Min-Jeong;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Comparative study of retinal structure in two Korean endemic freshwater fishes, Zacco koreanus and Pseudobagrus koreanus, was carried out by light and scanning electron microscopy. In the visual cell layer comprised of cone cells and rod cells, the cone cells showed a distinct difference between both species. Z. koreanus had two types of cone cells, single cone cells including a long single and short single cone cells, and double cone cells, whereas P. koreanus had only one type of single cone cells having no its short single and long single cones. Meanwhile, the cone cells of Z. koreanus were arranged in more compact-rowed pattern, but it was more loose and irregular in P. koreanus. Based on field observation, Z. koreanus is mainly a epipelagic or sometimes benthopelagic and a diurnal fish with a round and large eye, while P. koreanus is a demersal and nocturnal fish with an oval and small eye. Therefore, the difference in the retinal structure of two species seems to be closely related to their ecological habitats.

Visual Cells in the Retina of Iksookimia longicorpa (Pisces; Cobitidae) of Korea (한국산 미꾸리과 어류 왕종개 Iksookimia longicorpa 망막의 시각세포)

  • Kim, Jae Goo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.27 no.4
    • /
    • pp.257-262
    • /
    • 2015
  • The visual cells in the retina of Iksookimia longicorpa (Pisces, Cobitidae) were investigated by light and scanning electron microscopes. The retina ($216.42{\pm}13.36{\mu}m$) has several layers, and the visual cell layer consists of unequal double cones and large rods. In a double cone, two members are unequal such that one cone is longer than the other (long element $26.42{\pm}1.7{\mu}m$, short element $16.82{\pm}1.1{\mu}m$). The cones form a row mosaic pattern in which the partners of double cones are linearly oriented with a large rod. The visual cells observed have an outer segment (hematophilic), inner segment (eosinophilic). In scanning electron microscopy, the outer segment links to inner segment by so-called calyceal piles (calyceal processes) of membrane discs surrounded by double membranes.

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

Numerical Study of Combustion Characteristics and NO Emission in Swirl Premixed Burner (스월 예혼합 버너의 연소 특성 및 NO 배출에 관한 수치적 연구)

  • Baek, Gwang Min;Cho, Cheon Hyeon;Cho, Ju Hyeong;Kim, Han Seok;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.911-918
    • /
    • 2013
  • The combustion characteristics of an EV (Environmental Vortex) burner (double-cone burner) adopted in a gas turbines are numerically investigated. The mixing of fuel and air is analyzed for reduction of NO emission. To predict the correlation between NO emission and fuel-air mixedness, 1-step and 2-step chemistry models are adopted. The results calculated by 1-step chemistry showed that NO emissions increased by 2% in the case of degraded mixedness and by 169% in the case of improved mixedness, where the temperature in the flame zone was overestimated upstream of the cone. However, the corresponding results calculated by 2-step chemistry showed that NO emission increased by 3% and decreased by 5%, where the flame zone was not formed inside the cone. The latter results agree well with the experimental ones indicating an increase of 63% and decrease of 11% in the respective cases. Despite quantitative errors, NO emissions can be predicted reasonably by the application of the 2-step chemistry model adopted here and design modification of burner for NO reduction can be proposed based on the numerical data.