• Title/Summary/Keyword: Dosimetric influence

Search Result 6, Processing Time 0.017 seconds

Dosimetric Influence of Implanted Gold Markers in Proton Therapy for Prostate Cancer (전립선암에 대한 양성자치료에서 금마커에 의한 방사선 선량분포의 영향)

  • Kwak, Jung-Won;Shin, Jung-Wook;Kim, Jin-Sung;Park, Sung-Yong;Shin, Dong-Ho;Yoon, Myong-Geun;Park, So-Ah;Kim, Dong-Wook;Lim, Young-Gyeung;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • This study examined the dosimetric influence of implanted gold markers in proton therapy and the effects of their positions in the spread-out Bragg peak (SOBP) proton beam. The implanted cylindrical gold markers were 3 mm long and 1.2 mm in diameter. The dosimetric influence of the gold markers was determined with markers at various locations in a proton-beam field. Spatial dose distributions were measured using a three-dimensional moving water phantom and a stereotactic diode detector with an effective diameter of 0.5 mm. Also, a film dosimetry was performed using Gafchromic External Beam Treatment (EBT) film. The GEANT4 simulation toolkit was used for Monte-Carlo simulations to confirm the measurements and to construct the dose-volume histogram with implanting markers. Motion data were obtained from the portal images of 10 patients to investigate the effect of organ motions on the dosimetric influence of markers in the presence of a rectal balloon. The underdosed volume due to a single gold marker, in which the dose was less than 95% of a prescribed amount, was 0.15 cc. The underdosed volume due to the presence of a gold marker is much smaller than the target volume. However, the underdosed volume is inside the gross tumor volume and is not smeared out due to translational prostate motions. The positions of gold markers and the conditions of the proton-beam field give different impacts on the dose distribution of a target with implanted gold markers, and should be considered in all clinical proton-based therapies.

Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

  • Mani, Karthick Raj;Upadhayay, Sagar;Das, K.J. Maria
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • Purpose: To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. Materials and Methods: We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. Results: The conformity index average of all patients followed by standard deviation (${\bar{x}}{\pm}{\sigma}_{\bar{x}}$) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were $1.72{\pm}0.56$, $1.67{\pm}0.57$, $1.83{\pm}0.65$, and $1.85{\pm}0.64$, and homogeneity index were $0.059{\pm}0.05$, $0.064{\pm}0.05$, $0.064{\pm}0.04$, and $0.064{\pm}0.05$. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Conclusion: Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

Dosimetric and Clinical Predictors of Acute Esophagitis in Lung Cancer Patients in Turkey Treated with Radiotherapy

  • Etiz, Durmus;Bayman, Evrim;Akcay, Melek;Sahin, Bilgehan;Bal, Cengiz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4223-4228
    • /
    • 2013
  • Background: The purpose of this study was to determine the clinical and dosimetric factors associated with acute esophagitis (AE) in lung cancer patients treated with conformal radiotherapy (RT) in Turkey. Materials and Methods: In this retrospective review 104 lung cancer patients were examined. Esophagitis grades were verified weekly during treatment, and at 1 week, and 1 and 2 months afterwards. The clinical parameters included patient age, gender, tumor pathology, number of chemotherapy treatments before RT, concurrent chemotherapy, radiation dose, tumor response to RT, tumor localization, interruption of RT, weight loss, tumor and nodal stage and tumor volume. The following dosimetric parameters were analyzed for correlation of AE: The maximum ($D_{max}$) and mean ($D_{mean}$) doses delivered to the esophagus, the percentage of esophagus volume receiving ${\geq}10$ Gy ($V_{10}$), ${\geq}20$ Gy ($V_{20}$), ${\geq}30$ Gy ($V_{30}$), ${\geq}35$ Gy ($V_{35}$), ${\geq}40$ Gy ($V_{40}$), ${\geq}45$ Gy ($V_{45}$), ${\geq}50$ Gy ($V_{50}$) and ${\geq}60$ Gy ($V_{60}$). Results: Fifty-five patients (52.9%) developed AE. Maximum grades of AE were recorded: Grade 1 in 51 patients (49%), and Grade 2 in 4 patients (3.8%). Clinical factors had no statistically significant influence on the incidence of AE. In terms of dosimetric findings, correlation analyses demonstrated a significant association between AE and $D_{max}$ (>5117 cGy), $D_{mean}$ (>1487 cGy) and $V_{10-60}$ (percentage of volume receiving >10 to 60 Gy). The most significant relationship between RT and esophagitis were in $D_{max}$ (>5117 cGy) (p=0.002) and percentage of esophageal volume receiving >30 Gy ($V_{30}$ >31%) (p=0.008) in the logistic regression analysis. Conclusions: The maximum dose esophagus greater than 5117 cGy and approximately one third (31%) of the esophageal volume receiving >30 Gy was the most statistically significant predictive factor associated with esophagitis due to RT.

The dosimetric impact on treatment planning of the Dynamic MLC leaf gap (동적 다엽콜리메이터의 Leaf gap이 전산화 치료계획에 미치는 영향)

  • Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.

Influence of Couch and Collimator on Dose Distribution of RapidArc Treatment Planning for Prostate Cancer in Radiation Therapy (치료테이블과 콜리메이터가 전립선암 래피드아크 치료계획의 선량분포에 미치는 영향)

  • Kim, Hyung-Dong;Kim, Byung-Young;Kim, Sung-Jin;Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We investigated the influence of photon energy, couch and collimator angle differences between arcs on dose distribution of RapidArc treatment planning for prostate cancer. RapidArc plans were created for 6 MV and 10 MV photons using 2 arcs coplanar and noncoplanar fields. The collimator angle differences between two arcs were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The plans were optimized using same dose constrains for target and OAR (organ at risk). To evaluate the dose distribution, plans were analyzed using CI (conformity index), HI (homogeneity index), QOC (quality of coverage), etc. Photon energy, couch and collimator angle differences between arcs had a little influence on the target and OAR. The difference of dosimetric indices was less than 3.6% in the target and OAR. However, there was significant increase in the region exposed to low dose. The increase of V15% in the femur was 6.4% (left) and 5.5% (right) for the 6 MV treatment plan and 23.4% (left), 24.1% (right) for the noncoplanar plan. The increase of V10% in the Far Region distant from target was 54.2 cc for the 6 MV photon energy, 343.4 cc for the noncoplanar and 457.8 cc for the no collimator rotation between arcs.

Comparison of Treatment Planning on Dosimetric Differences Between 192Ir Sources for High-Dose Rate Brachytherapy (고선량률 근접치료에서 이리듐-192 선원의 선량특성 차이에 관한 치료계획 비교)

  • Yang, Oh-Nam;Shin, Seong Soo;Ahn, Woo Sang;Kim, Dae-Yong;Kwon, Kyung-Tae;Lim, Cheong-Hwan;Lee, Sang Ho;Choi, Wonsik
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • To evaluate whether the difference in geometrical characteristics between high-dose-rate (HDR) $^{192}Ir$ sources would influence the dose distributions of intracavitary brachytherapy. Two types of microSelectron HDR $^{192}Ir$ sources (classic and new models) were selected in this study. Two-dimensional (2D) treatment plans for classic and new sources were generated by using PLATO treatment planning system. We compared the point A, point B, and bladder and rectum reference points based on ICRU 38 recommendation. The radial dose function of the new source agrees with that of the classic source except difference of up to 2.6% at the nearest radial distance. The differences of anisotropy functions agree within 2% for r=1, 3, and 5 cm and $20^{\circ}$ < ${\theta}$ < $165^{\circ}$. The largest discrepancies of anisotropy functions reached up to 27% for ${\theta}$ < $20^{\circ}$ at r=0.25 cm and were up to 13%, 10%, and 7% at r=1, 3, and 5 cm for ${\theta}$ > $170^{\circ}$, respectively. There were no significant differences in doses of point A, point B, and bladder point for the treatment plans between the new and classic sources. For the ICRU rectum point, the percent dose difference was on average 0.65% and up to 1.0%. The dose discrepancies between two treatment plans are mainly affected due to the geometrical difference of the source and the sealed capsule.