• Title/Summary/Keyword: Dose-Area Product

Search Result 91, Processing Time 0.025 seconds

Evaluation of Diagnostic Reference Level in Interventional Procedures (인터벤션시술 진단참고수준 평가)

  • Kang, Byung-Sam;Park, Hyung-Shin
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.451-457
    • /
    • 2021
  • Recently, the number of interventional procedures has increased dramatically as an alternative of invasive surgical procedure and patient radiation exposure is also increasing accordingly. In this study, we evaluated the patient dose of major interventional procedures nationwide and we established our Korean database. With these results, we tried to suggest the reference dose level for major interventional procedures. We evaluated patent dose data in the field of interventional radiology from foreign countries. Measurement of radiation dose exposure for 11 major interventional procedures was conducted using embedded DAP meters in 10,006 patients from 47 hospitals, and reference level of each interventional procedure was suggested. The DRLs of each intervenional procedure are as follows: TACE 206(Gy·cm2), AVF 12(Gy·cm2), LE intervention 43(Gy·cm2), TFCA 122(Gy·cm2), Cerebral aneurysm coil embolization 214(Gy·cm2), PTBD 22(Gy·cm2), Biliary stent 60(Gy·cm2), PCN 7(Gy·cm2), Hickman catheter 2.1(Gy·cm2), Chemoport 1.4(Gy·cm2), BAE 104(Gy·cm2). Compared with the previously established DRL in 2012, the radiation dose decreased in all 10 interventional procedures. In the future, continuous publicity and education on the radiation dose reduction will be needed.

A Dose Analysis on the Ovary According to the Type of Shielding Material and the Change of Additional Filter in Radiography Using Diagnostic X-ray (진단용 X선을 이용한 방사선검사에서 차폐체 모양과 부가필터 변화에 따른 난소의 선량 분석)

  • Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.429-434
    • /
    • 2019
  • The gonads are directly affected by radiation exposure during radiography of the pelvis, abdomen, and spine. Exposure of the gonads to radiation can cause genetic mutations and can result in the occurrence of malignant tumors. In this study, we created three types of shielding material shapes for shielding of the ovaries, which are the gonads of female during radiography of the pelvis, and comparative evaluations using shadow shielding methods. The source surface distance(SSD) was 100 cm and the field size was 42 cm × 43 cm. The three types of shielding material shapes(type 1, 2 and 3) were assessed and the entrance surface dose in the ovaries were measured. The thickness of the shielding material was expanded from 0.3 mm to 2.4 mm and after five repetitions, radiation values were measured and mean values were calculated. The mean dose were 3.09 mGy for type 1, 3.54 mGy for type 2, and 3.19 mGy for type 3, indicating that the measurements were the lowest for type 1. When an additional filter of 0.2 Cu + 1 Al was used, the dose were 3.72 mGy for type 1, 5.43 mGy for type 2, and 4.05 mGy for type 3, indicating that the measurements were the lowest for type 1. The results show that, even if the shielding material is not thick, in other words, even with a thickness of 2.94 mGy for the SN 3(0.9 mm) of type 1, shielding can be achieved, with a patient dose lower than the diagnostic reference level(3.42 mGy). Additionally, among the three types of shielding material, the type 1 appeared to be the most appropriate shielding material. It is thought that the use of shielding material could reduce the risk factors for stochastic effects or critical effects of ionizing radiation during pelvic or lumbar radiography.

Radiographic examination protocol and patient dose in lateral cephalometric radiography in Korea (국내 의료기관에서 측방두부규격방사선촬영시 임상에서의 촬영조건 및 환자 선량)

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • v.40 no.4
    • /
    • pp.165-169
    • /
    • 2010
  • Purpose : To survey the radiographic examination protocol for lateral cephalometric radiographic examinations and to measure their patient doses in Korea and to compare the dose according to the size of hospital, the type of image receptor system, and the installation duration. Materials and Methods : The radiographic examination protocols (kVp, mA, and exposure time) for lateral cephalometric radiography were surveyed with 61 cephalometric radiographic equipments and their patient dose-area product (DAP) measured with a DAP meter (DIAMENTOR M4-KDK, PTW, Freiburg, Germany) for 51 cephalometric radiographic equipments. The radiographic examination protocols and patient doses were compared according to the size of hospital (university dental hospital, dental hospital, and dental clinic), the type of image receptor system (film-based, DR and CR type) and the installation duration, respectively. SPSS 12.0.1 for Windows (SPSS Inc., Chicago, USA) was used for independent t-test and ANOVA test. Results : The average protocols were 77.0 kVp, 12.7 mA, 6.2 second for cephalometric radiography. The average patient dose (DAP) was $128.0mGy\;cm^2$ and 3rd quartile dose (DAP) $161.1mGy\;cm^2$ for cephalometric radiography for adult male. There was no statistically significant difference at average patient DAP according to the size of hospital, the type of image receptor system, and the installation duration, repectively. Conclusion : The average patient dose was $128.0mGy\;cm^2$ and the third quartile patient dose $161.1mGy\;cm^2$ for lateral cephalometric radiography for adult male in Korea.

Radiation Dose and Estimate of Lifetime Attributable Risk of Cancer from Coronary Angiography and Percutaneous Coronary Intervention (관상동맥조영술과 경피적관상동맥중재술에서 환자 선량과 암 발생 생애귀속위험 평가)

  • Kang, Yeong-Han;Kim, Bu-Sun;Park, Jong-Sam
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.213-221
    • /
    • 2010
  • The Purpose of this study was to determine the effective dose to an average patient from Coronary Angiography (CA) and Percutaneous Coronary Intervention (PCI). And to estimate the lifetime attributable risk (LAR) of cancer associated with radiation exposure from CA and PCI. The dose-area product (DAP) values to the patient were recorded from 60 CA and 58 PCI. A Monte Carlo based program PCXMC was used to calculate the effective dose from DAP values for each patient. Lifetime attributable risks were estimated with models developed in the National Academies' Biological Effects of Ionizing Radiation VII report. The mean DAP values was $53.76\;Gy{\cdot}cm^2$ for CA and $165.82\;Gy{\cdot}cm^2$ for PCI. Mean effective dose were 1.28 mSv in CA, 3.94 mSv in PCI. Results of Calculate organ dose, lung doses was 2.17 mSv in CA and 6.71 mSv in PCI. Female breast doses was 5.45 mSv in CA and 16.82 mSv in PCI. LAR estimates for CA varied from 1 in 1,508 for man to 1 in 1,357 for women. In PCI procedure varied from 1 in 553 for man to 1 in 482 for women. DAP can be used as the dose indicator to calculate the organ dose and effective dose of patient based on Monte Carlo simulation. These dose estimates derived from our simulation models suggest that CA and PCI are associated with a nonnegligible LAR of cancer. This risk varies markedly and is considerably greater for women, PCI than for man, CA.

Optimization of Image Quality according to Sensitivity and Tube Voltage in Chest Digital Tomosynthesis (디지털 흉부단층합성검사에서 감도와 관전압 변화에 따른 영상 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.541-547
    • /
    • 2018
  • To evaluate the effect of dose and image quality for Chest Digital Tomosynthesis(CDT) using sensitivity and tube voltage(kV). CDT images of the phantom were acquired varying sensitivity 200, 320, 400 according to set tube voltage of 125 kV and 135 kV. The dose and Dose Area Product(DAP) according to change of sensitivity and kV were evaluated and Image quality was evaluated by PSNR, CNR, SNR using Image J. Dose were lowered 14~23% less than sensitivity 200, 125 kV and DAP were lowered 13~26% less than sensitivity 200, 125 kV. PSNR were over 27 dB, which were significant value and CNR, SNR were better as sensitivity value was lower. But there were different statistical significant to each item. CNR and SNR were not statistically significant at sensitivity 320, 135 kV(P>0.05). CDT can improve image quality with lower radiation dose using better than quality and correction power at digital radiography system.

Review of National Diagnostic Reference Levels for Interventional Procedures

  • Lee, Min Young;Kwon, Jae;Ryu, Gang Woo;Kim, Ki Hoon;Nam, Hyung Woo;Kim, Kwang Pyo
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.75-88
    • /
    • 2019
  • Diagnostic reference level (DRL) is employed to optimize the radiation doses of patients. The objective of this study is to review the DRLs for interventional procedures in Korea and abroad. Literature review was performed to investigate radiation dose index and measurement methodology commonly used in DRL determination. Dose area product (DAP) and fluoroscopy time within each major procedure category were systematically abstracted and analyzed. A wide variation was found in the radiation dose. The DAP values and fluoroscopy times ranged 0.01-3,081 Gy·㎠ and 2-16,878 seconds for all the interventional procedures, 8.5-1,679 Gy·㎠ and 32-5,775 seconds for the transcatheter arterial chemoembolization (TACE), and 0.1-686 Gy·㎠ and 16-6,636 seconds for the transfemoral cerebral angiography (TFCA), respectively. The DRL values of the DAP and fluoroscopy time were 238 Gy·㎠ and 1,224 seconds for the TACE and 189 Gy·㎠ and 686 seconds for the TFCA, respectively. Generally, the DRLs of Korea were lower than those of other developed countries, except for the percutaneous transluminal angioplasty with stent in arteries of the lower extremity (LE PTA and stent), aneurysm coil embolization, and Hickman insertion procedures. The wide variation in the radiation doses of the different procedures suggests that more attention must be paid to reduce unnecessary radiation exposure from medical imaging. Furthermore, periodic nationwide survey of medical radiation exposures is necessary to optimize the patient dose for radiation protection, which will ultimately contribute to patient dose reduction and radiological safety.

Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software (PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

Conversion coefficients for the estimation of effective dose in cone-beam CT

  • Kim, Dong-Soo;Rashsuren, Oyuntugs;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.44 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Purpose: To determine the conversion coefficients (CCs) from the dose-area product (DAP) value to effective dose in cone-beam CT. Materials and Methods: A CBCT scanner with four fields of view (FOV) was used. Using two exposure settings of the adult standard and low dose exposure, DAP values were measured with a DAP meter in C mode ($200mm{\times}179mm$), P mode ($154mm{\times}154mm$), I mode ($102mm{\times}102mm$), and D mode ($51mm{\times}51mm$). The effective doses were also investigated at each mode using an adult male head and neck phantom and thermoluminescent chips. Linear regressive analysis of the DAP and effective dose values was used to calculate the CCs for each CBCT examination. Results: For the C mode, the P mode at the maxilla, and the P mode at the mandible, the CCs were 0.049 ${\mu}Sv/mGycm^2$, 0.067 ${\mu}Sv/mGycm^2$, and 0.064 ${\mu}Sv/mGycm^2$, respectively. For the I mode, the CCs at the maxilla and mandible were 0.076 ${\mu}Sv/mGycm^2$ and 0.095 ${\mu}Sv/mGycm^2$, respectively. For the D mode at the maxillary incisors, molars, and mandibular molars, the CCs were 0.038 ${\mu}Sv/mGycm^2$, 0.041 ${\mu}Sv/mGycm^2$, and 0.146 ${\mu}Sv/mGycm^2$, respectively. Conclusion: The CCs in one CBCT device with fixed 80 kV ranged from 0.038 ${\mu}Sv/mGycm^2$ to 0.146 ${\mu}Sv/mGycm^2$ according to the imaging modes and irradiated region and were highest for the D mode at the mandibular molar.

Low-Dose Three-Dimensional Rotational Angiography for Evaluating Intracranial Aneurysms: Analysis of Image Quality and Radiation Dose

  • Hee Jong Ki;Bum-soo Kim;Jun-Ki Kim;Jai Ho Choi;Yong Sam Shin;Yangsean Choi;Na-Young Shin;Jinhee Jang;Kook-jin Ahn
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.256-263
    • /
    • 2022
  • Objective: This study aimed to evaluate the image quality and dose reduction of low-dose three-dimensional (3D) rotational angiography (RA) for evaluating intracranial aneurysms. Materials and Methods: We retrospectively evaluated the clinical data and 3D RA datasets obtained from 146 prospectively registered patients (male:female, 46:100; median age, 58 years; range, 19-81 years). The subjective image quality of 79 examinations obtained from a conventional method and 67 examinations obtained from a low-dose (5-seconds and 0.10-μGy/frame) method was assessed by two neurointerventionists using a 3-point scale for four evaluation criteria. The total image quality score was then obtained as the average of the four scores. The image quality scores were compared between the two methods using a noninferiority statistical testing, with a margin of -0.2 (i.e., score of low-dose group - score of conventional group). For the evaluation of dose reduction, dose-area product (DAP) and air kerma (AK) were analyzed and compared between the two groups. Results: The mean total image quality score ± standard deviation of the 3D RA was 2.97 ± 0.17 by reader 1 and 2.95 ± 0.20 by reader 2 for conventional group and 2.92 ± 0.30 and 2.95 ± 0.22, respectively, for low-dose group. The image quality of the 3D RA in the low-dose group was not inferior to that of the conventional group according to the total image quality score as well as individual scores for the four criteria in both readers. The mean DAP and AK per rotation were 5.87 Gy-cm2 and 0.56 Gy, respectively, in the conventional group, and 1.32 Gy-cm2 (p < 0.001) and 0.17 Gy (p < 0.001), respectively, in the low-dose group. Conclusion: Low-dose 3D RA was not inferior in image quality and reduced the radiation dose by 70%-77% compared to the conventional 3D RA in evaluating intracranial aneurysms.

Evaluation of Patient Radiation Doses Using DAP Meter in Interventional Radiology Procedures (인터벤션 시술 시 면적선량계를 이용한 환자 방사선 선량 평가)

  • Kang, Byung-Sam;Yoon, Yong-Su
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The author investigated interventional radiology patient doses in several other countries, assessed accuracy of DAP meters embedded in intervention equipments in domestic country, conducted measurement of patient doses for 13 major interventional procedures with use of Dose Area Product(DAP) meters from 23 hospitals in Korea, and referred to 8,415 cases of domestic data related to interventional procedures by radiation exposure after evaluation the actual effectives of dose reduction variables through phantom test. Finally, dose reference level for major interventional procedures was suggested. In this study, guidelines for patient doses were $237.7Gy{\cdot}cm^2$ in TACE, $17.3Gy{\cdot}cm^2$ in AVF, $114.1Gy{\cdot}cm^2$ in LE PTA & STENT, $188.5Gy{\cdot}cm^2$ in TFCA, $383.5Gy{\cdot}cm^2$ in Aneurysm Coil, $64.6Gy{\cdot}cm^2$ in PTBD, $64.6Gy{\cdot}cm^2$ in Biliary Stent, $22.4Gy{\cdot}cm^2$ in PCN, $4.3Gy{\cdot}cm^2$ in Hickman, $2.8Gy{\cdot}cm^2$ in Chemo-port, $4.4Gy{\cdot}cm^2$ in Perm-Cather, $17.1Gy{\cdot}cm^2$ in PCD, and $357.9Gy{\cdot}cm^2$ in Vis, EMB. Dose referenece level acquired in this study is considered to be able to use as minimal guidelines for reducing patient dose in the interventional radiology procedures. For the changes and advances of materials and development of equipments and procedures in the interventional radiology procedures, further studies and monitorings are needed on dose reference level Korean DAP dose conversion factor for the domestic procedures.